論文の概要: TCM-Tongue: A Standardized Tongue Image Dataset with Pathological Annotations for AI-Assisted TCM Diagnosis
- arxiv url: http://arxiv.org/abs/2507.18288v1
- Date: Thu, 24 Jul 2025 10:49:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.422503
- Title: TCM-Tongue: A Standardized Tongue Image Dataset with Pathological Annotations for AI-Assisted TCM Diagnosis
- Title(参考訳): TCM-Tongue:AI支援TCM診断のための病理アノテーションを用いた標準化された舌画像データセット
- Authors: Xuebo Jin, Longfei Gao, Anshuo Tong, Zhengyang Chen, Jianlei Kong, Ning Sun, Huijun Ma, Qiang Wang, Yuting Bai, Tingli Su,
- Abstract要約: 従来の中国医学(TCM)の舌診断は、主観的解釈と一貫性のない画像プロトコルによる標準化の課題に直面している。
このギャップに対処するため、AI駆動型TCM舌診断のための最初の特別なデータセットを提示する。
このデータセットは、標準化された条件下でキャプチャされ、20の病理症状カテゴリーで注釈付けされた6,719の高品質な画像を含んでいる。
- 参考スコア(独自算出の注目度): 12.39302160184597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional Chinese medicine (TCM) tongue diagnosis, while clinically valuable, faces standardization challenges due to subjective interpretation and inconsistent imaging protocols, compounded by the lack of large-scale, annotated datasets for AI development. To address this gap, we present the first specialized dataset for AI-driven TCM tongue diagnosis, comprising 6,719 high-quality images captured under standardized conditions and annotated with 20 pathological symptom categories (averaging 2.54 clinically validated labels per image, all verified by licensed TCM practitioners). The dataset supports multiple annotation formats (COCO, TXT, XML) for broad usability and has been benchmarked using nine deep learning models (YOLOv5/v7/v8 variants, SSD, and MobileNetV2) to demonstrate its utility for AI development. This resource provides a critical foundation for advancing reliable computational tools in TCM, bridging the data shortage that has hindered progress in the field, and facilitating the integration of AI into both research and clinical practice through standardized, high-quality diagnostic data.
- Abstract(参考訳): 従来の中国医学(TCM)の舌診断は臨床的に有用であるが、AI開発のための大規模な注釈付きデータセットが欠如しているため、主観的解釈と一貫性のない画像プロトコルによる標準化の課題に直面している。
このギャップに対処するために、我々は、標準化された条件下で取得された6,719の高品質な画像と20の病理症状カテゴリー(画像あたり2.54の臨床的に検証されたラベル)を付加した、AI駆動型TCM舌診断のための最初の特別なデータセットを提示する。
このデータセットは、幅広いユーザビリティのための複数のアノテーションフォーマット(COCO、TXT、XML)をサポートし、9つのディープラーニングモデル(YOLOv5/v7/v8変種、SSD、MobileNetV2)を使用してベンチマークされ、AI開発にその有用性を実証している。
このリソースは、TCMにおける信頼性の高い計算ツールの進化、この分野の進歩を妨げるデータ不足の橋渡し、標準化された高品質な診断データを通じて、研究と臨床の両方にAIを統合するための重要な基盤を提供する。
関連論文リスト
- Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence [83.02106623401885]
プライバシー保護型超音波基礎モデルであるUltraFedFMを提案する。
UltraFedFMは、9か国の16の分散医療機関にわたる連合学習を用いて、協調的に事前訓練されている。
疾患診断には0.927のレシーバ動作特性曲線、病変セグメント化には0.878のサイス類似係数を平均的に達成する。
論文 参考訳(メタデータ) (2024-11-25T13:40:11Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
人工知能(AI)に基づく合成データ生成は、臨床医学の届け方を変えることができる。
本研究は,無線カプセル内視鏡(WCE)画像を用いた炎症性腸疾患(IBD)の診断における概念実証による医療用SDGの臨床評価に焦点を当てた。
その結果、TIDE-IIは、最先端の生成モデルと比較して品質が向上し、臨床的に可塑性で、非常に現実的なWCE画像を生成することがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI [67.09501109871351]
LVLM(Large Vision-Language Model)は、画像、テキスト、生理学的信号などの多様なデータタイプを扱うことができる。
GMAI-MMBenchは、よく分類されたデータ構造と、これまででもっとも包括的な一般医療用AIベンチマークである。
38の医療画像モダリティ、18の臨床関連タスク、18の部門、視覚質問回答(VQA)フォーマットの4つの知覚的粒度からなる284のデータセットで構成されている。
論文 参考訳(メタデータ) (2024-08-06T17:59:21Z) - Full-Scale Indexing and Semantic Annotation of CT Imaging: Boosting FAIRness [0.41942958779358674]
提案手法は, 検索性, アクセシビリティ, インターオペラビリティ, 再利用性を向上させるために, 臨床計算断層撮影(CT)画像シリーズの統合と向上に重点を置いている。
メタデータはHL7 FHIRリソースで標準化され、研究プロジェクト間の効率的なデータ認識とデータ交換を可能にする。
この研究は、UKSH MeDIC内で堅牢なプロセスを統合することに成功し、23万以上のCT画像シリーズと800万以上のSNOMED CTアノテーションのセマンティックエンリッチ化につながった。
論文 参考訳(メタデータ) (2024-06-21T17:55:22Z) - ProtoAL: Interpretable Deep Active Learning with prototypes for medical imaging [0.6292138336765966]
本稿では,解釈可能なDLモデルをDeep Active Learningフレームワークに統合するProtoAL手法を提案する。
我々は,Messidorデータセット上でProtoALを評価し,精度-リコール曲線0.79の領域を実現するとともに,利用可能なラベル付きデータの76.54%しか利用していない。
論文 参考訳(メタデータ) (2024-04-06T21:39:49Z) - VIS-MAE: An Efficient Self-supervised Learning Approach on Medical Image Segmentation and Classification [33.699424327366856]
医用画像に特化して設計された新しいモデルウェイトであるVisualization and Masked AutoEncoder(VIS-MAE)について述べる。
VIS-MAEは、様々なモダリティから250万枚の未ラベル画像のデータセットで訓練されている。
その後、明示的なラベルを使って分類とセグメンテーションのタスクに適応する。
論文 参考訳(メタデータ) (2024-02-01T21:45:12Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
そこで我々は,高品質な病理像を生成するためのテキスト条件付き遅延拡散モデルPathLDMを紹介した。
提案手法は画像とテキストデータを融合して生成プロセスを強化する。
我々は,TCGA-BRCAデータセット上でのテキスト・ツー・イメージ生成において,SoTA FIDスコア7.64を達成し,FID30.1と最も近いテキスト・コンディショナブル・コンペティタを著しく上回った。
論文 参考訳(メタデータ) (2023-09-01T22:08:32Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
補綴関節感染症(PJI)は重篤な合併症である。
現在,CT画像とPJIの数値テキストデータを組み合わせた統一診断基準が確立されていない。
本研究では,ディープラーニングとマルチモーダル技術に基づく診断手法であるHGTを紹介する。
論文 参考訳(メタデータ) (2023-05-29T11:25:57Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
新型コロナウイルスの診断はPCR検査で効率的に行えるようになったが、このユースケースは、データの多様性を克服する方法論の必要性を実証するものだ。
本稿では,CTスキャンに最小限の変更を同時に導入しながら,イメージング技術によって引き起こされる差を解消することを目的とした,新しい生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T15:49:47Z) - TCM-SD: A Benchmark for Probing Syndrome Differentiation via Natural
Language Processing [31.190757020836656]
TCM診断・治療システムの中核的課題に焦点をあてる -- 症候群分化(SD)
本データセットは,148症例を対象とした実世界の臨床記録54,152例を含む。
本稿では、ZY-BERTと呼ばれるドメイン固有の事前学習言語モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T09:59:54Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z) - Collaborative Unsupervised Domain Adaptation for Medical Image Diagnosis [102.40869566439514]
我々は、Unsupervised Domain Adaptation (UDA)を通じて、対象タスクにおける学習を支援するために、関連ドメインからの豊富なラベル付きデータを活用しようとしている。
クリーンなラベル付きデータやサンプルを仮定するほとんどのUDAメソッドが等しく転送可能であるのとは異なり、協調的教師なしドメイン適応アルゴリズムを革新的に提案する。
提案手法の一般化性能を理論的に解析し,医用画像と一般画像の両方で実験的に評価する。
論文 参考訳(メタデータ) (2020-07-05T11:49:17Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。