論文の概要: Full-Scale Indexing and Semantic Annotation of CT Imaging: Boosting FAIRness
- arxiv url: http://arxiv.org/abs/2406.15340v1
- Date: Fri, 21 Jun 2024 17:55:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 12:43:51.096370
- Title: Full-Scale Indexing and Semantic Annotation of CT Imaging: Boosting FAIRness
- Title(参考訳): CT画像のフルスケールインデクシングとセマンティックアノテーション
- Authors: Hannes Ulrich, Robin Hendel, Santiago Pazmino, Björn Bergh, Björn Schreiweis,
- Abstract要約: 提案手法は, 検索性, アクセシビリティ, インターオペラビリティ, 再利用性を向上させるために, 臨床計算断層撮影(CT)画像シリーズの統合と向上に重点を置いている。
メタデータはHL7 FHIRリソースで標準化され、研究プロジェクト間の効率的なデータ認識とデータ交換を可能にする。
この研究は、UKSH MeDIC内で堅牢なプロセスを統合することに成功し、23万以上のCT画像シリーズと800万以上のSNOMED CTアノテーションのセマンティックエンリッチ化につながった。
- 参考スコア(独自算出の注目度): 0.41942958779358674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: The integration of artificial intelligence into medicine has led to significant advances, particularly in diagnostics and treatment planning. However, the reliability of AI models is highly dependent on the quality of the training data, especially in medical imaging, where varying patient data and evolving medical knowledge pose a challenge to the accuracy and generalizability of given datasets. Results: The proposed approach focuses on the integration and enhancement of clinical computed tomography (CT) image series for better findability, accessibility, interoperability, and reusability. Through an automated indexing process, CT image series are semantically enhanced using the TotalSegmentator framework for segmentation and resulting SNOMED CT annotations. The metadata is standardized with HL7 FHIR resources to enable efficient data recognition and data exchange between research projects. Conclusions: The study successfully integrates a robust process within the UKSH MeDIC, leading to the semantic enrichment of over 230,000 CT image series and over 8 million SNOMED CT annotations. The standardized representation using HL7 FHIR resources improves discoverability and facilitates interoperability, providing a foundation for the FAIRness of medical imaging data. However, developing automated annotation methods that can keep pace with growing clinical datasets remains a challenge to ensure continued progress in large-scale integration and indexing of medical imaging for advanced healthcare AI applications.
- Abstract(参考訳): 背景: 医学への人工知能の統合は、特に診断や治療計画において大きな進歩をもたらした。
しかし、AIモデルの信頼性はトレーニングデータの品質に大きく依存しており、特に医療画像では、様々な患者データと進化する医療知識が、与えられたデータセットの正確性と一般化性に挑戦する。
結果: 提案手法は, 検索性, アクセシビリティ, インターオペラビリティ, 再利用性を向上させるために, 臨床計算断層撮影(CT)画像シリーズの統合と向上に重点を置いている。
自動インデックス化プロセスを通じて,TotalSegmentatorフレームワークを使用してCT画像系列を意味的に拡張し,SNOMED CTアノテーションを生成する。
メタデータはHL7 FHIRリソースで標準化され、研究プロジェクト間の効率的なデータ認識とデータ交換を可能にする。
結論: この研究は、UKSH MeDIC内で堅牢なプロセスを統合することに成功し、23万以上のCT画像シリーズと800万以上のSNOMED CTアノテーションのセマンティックエンリッチ化につながった。
HL7 FHIRリソースを用いた標準化された表現は、発見性を改善し、相互運用性を促進し、医療画像データのFAIRnessの基礎を提供する。
しかし、臨床データセットの増大に追随できる自動アノテーション手法の開発は、高度な医療AIアプリケーションのための医療画像の大規模統合とインデックス化の継続的な進歩を保証するための課題である。
関連論文リスト
- MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation [0.0]
本稿では,医用画像セグメンテーションのためのU-Netフレームワークを用いて,トランスフォーマーモデルの強度を相乗化する新しいアーキテクチャMAPUNetRを紹介する。
本モデルでは,分解能保存課題に対処し,セグメンテーションされた領域に着目したアテンションマップを導入し,精度と解釈可能性を高める。
臨床実習における医用画像セグメンテーションの強力なツールとして,本モデルが安定した性能と可能性を維持していることを示す。
論文 参考訳(メタデータ) (2024-10-29T16:52:57Z) - Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation [3.7274206780843477]
我々は、AIとクラウドソーシングを組み合わせた堅牢で汎用的なフレームワークを導入し、医療画像データセットの品質と量を改善する。
当社のアプローチでは,多様なクラウドアノテータのグループによる医療画像のラベル付けを効率的に行うことができる,ユーザフレンドリーなオンラインプラットフォームを活用している。
我々は、生成AIモデルであるpix2pixGANを使用して、リアルな形態的特徴をキャプチャする合成画像を用いてトレーニングデータセットを拡張する。
論文 参考訳(メタデータ) (2024-09-04T21:22:54Z) - MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [0.13108652488669734]
神経ネットワークに基づくシステムの臨床実践への統合は、ドメインの一般化と堅牢性に関連する課題によって制限される。
我々は、12のデータセットと9つの画像モダリティをカバーするMedMNIST+コレクションに基づくベンチマークデータセットであるMedMNIST-Cを作成し、オープンソース化した。
論文 参考訳(メタデータ) (2024-06-25T13:20:39Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
EHRの値と測定値に画像処理を条件付け,臨床画像と表層データを融合させるハイパーネットワークに基づく新しいフレームワークを提案する。
我々は, 単一モダリティモデルと最先端MRI-タブラルデータ融合法の両方に優れることを示す。
論文 参考訳(メタデータ) (2024-03-20T05:50:04Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic
Joint Infection Diagnosis Using CT Images and Text [0.0]
補綴関節感染症(PJI)は重篤な合併症である。
現在,CT画像とPJIの数値テキストデータを組み合わせた統一診断基準が確立されていない。
本研究では,ディープラーニングとマルチモーダル技術に基づく診断手法であるHGTを紹介する。
論文 参考訳(メタデータ) (2023-05-29T11:25:57Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。