論文の概要: DSFormer: A Dual-Scale Cross-Learning Transformer for Visual Place Recognition
- arxiv url: http://arxiv.org/abs/2507.18444v1
- Date: Thu, 24 Jul 2025 14:29:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:43.747372
- Title: DSFormer: A Dual-Scale Cross-Learning Transformer for Visual Place Recognition
- Title(参考訳): DSFormer: 視覚的位置認識のためのデュアルスケールクロスラーニングトランス
- Authors: Haiyang Jiang, Songhao Piao, Chao Gao, Lei Yu, Liguo Chen,
- Abstract要約: 本稿では,TransformerベースのクロスラーニングモジュールであるDual-Scale-Former(DSFormer)と,革新的なブロッククラスタリング戦略を統合する新しいフレームワークを提案する。
提案手法は,ほとんどのベンチマークデータセットにまたがって最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 16.386674597850778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual Place Recognition (VPR) is crucial for robust mobile robot localization, yet it faces significant challenges in maintaining reliable performance under varying environmental conditions and viewpoints. To address this, we propose a novel framework that integrates Dual-Scale-Former (DSFormer), a Transformer-based cross-learning module, with an innovative block clustering strategy. DSFormer enhances feature representation by enabling bidirectional information transfer between dual-scale features extracted from the final two CNN layers, capturing both semantic richness and spatial details through self-attention for long-range dependencies within each scale and shared cross-attention for cross-scale learning. Complementing this, our block clustering strategy repartitions the widely used San Francisco eXtra Large (SF-XL) training dataset from multiple distinct perspectives, optimizing data organization to further bolster robustness against viewpoint variations. Together, these innovations not only yield a robust global embedding adaptable to environmental changes but also reduce the required training data volume by approximately 30\% compared to previous partitioning methods. Comprehensive experiments demonstrate that our approach achieves state-of-the-art performance across most benchmark datasets, surpassing advanced reranking methods like DELG, Patch-NetVLAD, TransVPR, and R2Former as a global retrieval solution using 512-dim global descriptors, while significantly improving computational efficiency.
- Abstract(参考訳): 視覚的位置認識(VPR)は、ロバストな移動ロボットのローカライゼーションにおいて重要であるが、環境条件や視点によって信頼性の高い性能を維持する上で大きな課題に直面している。
そこで本研究では,TransformerベースのクロスラーニングモジュールであるDual-Scale-Former(DSFormer)を,革新的なブロッククラスタリング戦略と統合した新しいフレームワークを提案する。
DSFormerは、最後の2つのCNN層から抽出されたデュアルスケール特徴間の双方向情報転送を可能にし、各スケール内の長距離依存関係に対する自己アテンションと、クロススケール学習のための相互アテンションの共有を通じて、セマンティックリッチネスと空間的詳細の両方をキャプチャすることで、特徴表現を強化する。
我々のブロッククラスタリング戦略は、広く使われているサンフランシスコのeXtra Large(SF-XL)トレーニングデータセットを、複数の異なる視点から再分割し、データ組織を最適化して、視点変動に対するロバスト性をさらに強化します。
これらのイノベーションは、環境変化に適応できるロバストなグローバルな埋め込みをもたらすだけでなく、従来の分割方式に比べて、必要なトレーニングデータ量を約30%削減する。
包括的実験により,DLG,Patch-NetVLAD,TransVPR,R2Formerといった先進的な手法を512dimのグローバルディスクリプタを用いたグローバル検索ソリューションとして超越し,計算効率を大幅に向上した。
関連論文リスト
- Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID [82.12123628480371]
教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-27T13:58:12Z) - Any Image Restoration via Efficient Spatial-Frequency Degradation Adaptation [158.37640586809187]
劣化した画像を1つのモデルで効率的に復元することは、ますます重要になっている。
我々のアプローチはAnyIRと呼ばれ、様々な劣化にまたがる固有の類似性を活用する統一された経路をとっています。
劣化認識と文脈的注意を融合させるため,空間周波数並列融合戦略を提案する。
論文 参考訳(メタデータ) (2025-04-19T09:54:46Z) - Effective Dual-Region Augmentation for Reduced Reliance on Large Amounts of Labeled Data [1.0901840476380924]
本稿では,大規模ラベル付きデータセットへの依存を減らすために,新しい二重領域拡張手法を提案する。
提案手法は,前景オブジェクトにランダムノイズ摂動を適用することで,対象データ変換を行う。
構造化変換によるトレーニングデータの拡大により,ドメイン間のモデル一般化が可能となる。
論文 参考訳(メタデータ) (2025-04-17T16:42:33Z) - C2D-ISR: Optimizing Attention-based Image Super-resolution from Continuous to Discrete Scales [6.700548615812325]
我々は、注目に基づく画像超解像モデルの最適化のための新しいフレームワーク、textbfC2D-ISRを提案する。
このアプローチは、2段階のトレーニング手法と階層的なエンコーディング機構に基づいている。
さらに,既存のアテンションベースネットワーク構造を用いて階層符号化機構を一般化する。
論文 参考訳(メタデータ) (2025-03-17T21:52:18Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
モデルバイナライゼーションは畳み込みニューラルネットワーク(CNN)のリアルタイムおよびエネルギー効率の計算を可能にした。
本稿では,バイナライズフレンドリーなハイブリッドViTアーキテクチャであるBHViTとそのバイナライズモデルを提案する。
提案アルゴリズムは,バイナリ ViT 手法間でSOTA 性能を実現する。
論文 参考訳(メタデータ) (2025-03-04T08:35:01Z) - One for all: A novel Dual-space Co-training baseline for Large-scale
Multi-View Clustering [42.92751228313385]
我々は、Dual-space Co-training Large-scale Multi-view Clustering (DSCMC)という新しいマルチビュークラスタリングモデルを提案する。
提案手法の主な目的は,2つの異なる空間における協調学習を活用することにより,クラスタリング性能を向上させることである。
我々のアルゴリズムは近似線形計算複雑性を持ち、大規模データセットへの適用が成功することを保証している。
論文 参考訳(メタデータ) (2024-01-28T16:30:13Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - GARNet: Global-Aware Multi-View 3D Reconstruction Network and the
Cost-Performance Tradeoff [10.8606881536924]
本稿では,各ブランチとグローバル間の相関関係を構築し,重み付け推論の包括的基盤を提供する,グローバルアウェアアテンションベースの融合手法を提案する。
ネットワークの能力を高めるために,ネットワーク全体の形状を監督する新たな損失関数を導入する。
ShapeNetの実験により,本手法が既存のSOTA法より優れていることを確認した。
論文 参考訳(メタデータ) (2022-11-04T07:45:19Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
セグメンテーションネットワークによって抽出されたマルチスケール特徴の識別能力を高めるために,コントラスト学習を適用した。
まず、エンコーダのマルチスケール表現を共通の特徴空間にマッピングすることにより、教師付き局所言語制約の新しい形式をインスタンス化する。
論文 参考訳(メタデータ) (2022-03-25T01:24:24Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
仮想データから絶対スケールを取得するための新しいフレームワークであるVRVOを提案する。
まず、モノクロ実画像とステレオ仮想データの両方を用いて、スケール対応の異種ネットワークをトレーニングする。
結果として生じるスケール一貫性の相違は、直接VOシステムと統合される。
論文 参考訳(メタデータ) (2022-03-11T01:51:54Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet)はビデオオブジェクトセグメンテーション(VOS)のための新しいフレームワークである
我々のFSNetは、融合復号ステージの前に、クロスモーダルな機能パス(すなわち、送信と受信)を同時に実行します。
我々のFSNetは、VOSとビデオの有能なオブジェクト検出タスクの両方において、他の最先端技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-06T14:50:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。