Automated Code Review Using Large Language Models with Symbolic Reasoning
- URL: http://arxiv.org/abs/2507.18476v1
- Date: Thu, 24 Jul 2025 14:50:27 GMT
- Title: Automated Code Review Using Large Language Models with Symbolic Reasoning
- Authors: Busra Icoz, Goksel Biricik,
- Abstract summary: This study proposes a hybrid approach that integrates symbolic reasoning techniques with Large Language Models.<n>Our results show that this approach improves the accuracy and efficiency of automated code review.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code review is one of the key processes in the software development lifecycle and is essential to maintain code quality. However, manual code review is subjective and time consuming. Given its rule-based nature, code review is well suited for automation. In recent years, significant efforts have been made to automate this process with the help of artificial intelligence. Recent developments in Large Language Models (LLMs) have also emerged as a promising tool in this area, but these models often lack the logical reasoning capabilities needed to fully understand and evaluate code. To overcome this limitation, this study proposes a hybrid approach that integrates symbolic reasoning techniques with LLMs to automate the code review process. We tested our approach using the CodexGlue dataset, comparing several models, including CodeT5, CodeBERT, and GraphCodeBERT, to assess the effectiveness of combining symbolic reasoning and prompting techniques with LLMs. Our results show that this approach improves the accuracy and efficiency of automated code review.
Related papers
- MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks [56.34018316319873]
We propose MERA Code, a benchmark for evaluating code for the latest code generation LLMs in Russian.<n>This benchmark includes 11 evaluation tasks that span 8 programming languages.<n>We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages.
arXiv Detail & Related papers (2025-07-16T14:31:33Z) - Leveraging Reward Models for Guiding Code Review Comment Generation [13.306560805316103]
Code review is a crucial component of modern software development, involving the evaluation of code quality, providing feedback on potential issues, and refining the code to address identified problems.<n>Deep learning techniques are able to tackle the generative aspect of code review, by commenting on a given code as a human reviewer would do.<n>In this paper, we introduce CoRAL, a deep learning framework automating review comment generation by exploiting reinforcement learning with a reward mechanism.
arXiv Detail & Related papers (2025-06-04T21:31:38Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Is Compression Really Linear with Code Intelligence? [60.123628177110206]
textitFormat Annealing is a lightweight, transparent training methodology designed to assess the intrinsic capabilities of pre-trained models equitably.<n>Our empirical results reveal a fundamental logarithmic relationship between measured code intelligence and bits-per-character (BPC)<n>Our work provides a more nuanced understanding of compression's role in developing code intelligence and contributes a robust evaluation framework in the code domain.
arXiv Detail & Related papers (2025-05-16T16:59:14Z) - On Explaining (Large) Language Models For Code Using Global Code-Based Explanations [45.126233498200534]
Language Models for Code (LLM4Code) have significantly changed the landscape of software engineering (SE)<n>We introduce code rationales (Code$Q$), a technique with rigorous mathematical underpinning, to identify subsets of tokens that can explain individual code predictions.<n>Our evaluation demonstrates that Code$Q$ is a powerful interpretability method to explain how (less) meaningful input concepts (i.e., natural language particle at') highly impact output generation.
arXiv Detail & Related papers (2025-03-21T01:00:45Z) - Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs [53.00384299879513]
In large language models (LLMs), code and reasoning reinforce each other.<n>Code provides verifiable execution paths, enforces logical decomposition, and enables runtime validation.<n>We identify key challenges and propose future research directions to strengthen this synergy.
arXiv Detail & Related papers (2025-02-26T18:55:42Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [20.013757490442064]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions.<n>CodeIF encompasses a broad range of tasks, including function synthesis, algorithmic instructions, and code explanation.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - BitsAI-CR: Automated Code Review via LLM in Practice [16.569842114384233]
BitsAI-CR is an innovative framework that enhances code review through a two-stage approach.<n>System is built upon a comprehensive taxonomy of review rules and implements a data flywheel mechanism.<n> Empirical evaluation demonstrates BitsAI-CR's effectiveness, achieving 75.0% precision in review comment generation.
arXiv Detail & Related papers (2025-01-25T08:39:50Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.<n>CodeIP is a novel multi-bit watermarking technique that inserts additional information to preserve provenance details.<n>Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - Automating Patch Set Generation from Code Review Comments Using Large Language Models [2.045040820541428]
We provide code contexts to five popular Large Language Models (LLMs)
We obtain the suggested code-changes (patch sets) derived from real-world code-review comments.
The performance of each model is meticulously assessed by comparing their generated patch sets against the historical data of human-generated patch-sets.
arXiv Detail & Related papers (2024-04-10T02:46:08Z) - CodeCoT: Tackling Code Syntax Errors in CoT Reasoning for Code
Generation [6.139760107605468]
Chain-of-thought (CoT) has emerged as a groundbreaking tool in NLP, notably for its efficacy in complex reasoning tasks.
We present Code Chain-of-Thought (CodeCoT) that integrates CoT with a self-examination process for code generation.
arXiv Detail & Related papers (2023-08-17T04:58:51Z) - CodeRL: Mastering Code Generation through Pretrained Models and Deep
Reinforcement Learning [92.36705236706678]
"CodeRL" is a new framework for program synthesis tasks through pretrained LMs and deep reinforcement learning.
During inference, we introduce a new generation procedure with a critical sampling strategy.
For the model backbones, we extended the encoder-decoder architecture of CodeT5 with enhanced learning objectives.
arXiv Detail & Related papers (2022-07-05T02:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.