Delving into Mapping Uncertainty for Mapless Trajectory Prediction
- URL: http://arxiv.org/abs/2507.18498v1
- Date: Thu, 24 Jul 2025 15:13:11 GMT
- Title: Delving into Mapping Uncertainty for Mapless Trajectory Prediction
- Authors: Zongzheng Zhang, Xuchong Qiu, Boran Zhang, Guantian Zheng, Xunjiang Gu, Guoxuan Chi, Huan-ang Gao, Leichen Wang, Ziming Liu, Xinrun Li, Igor Gilitschenski, Hongyang Li, Hang Zhao, Hao Zhao,
- Abstract summary: Recent advances in autonomous driving are moving towards mapless approaches.<n>High-Definition (HD) maps are generated online directly from sensor data, reducing the need for expensive labeling and maintenance.<n>In this work, we analyze the driving scenarios in which mapping uncertainty has the greatest positive impact on trajectory prediction.<n>We propose a novel Proprioceptive Scenario Gating that adaptively integrates map uncertainty into trajectory prediction.
- Score: 41.70949328930293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in autonomous driving are moving towards mapless approaches, where High-Definition (HD) maps are generated online directly from sensor data, reducing the need for expensive labeling and maintenance. However, the reliability of these online-generated maps remains uncertain. While incorporating map uncertainty into downstream trajectory prediction tasks has shown potential for performance improvements, current strategies provide limited insights into the specific scenarios where this uncertainty is beneficial. In this work, we first analyze the driving scenarios in which mapping uncertainty has the greatest positive impact on trajectory prediction and identify a critical, previously overlooked factor: the agent's kinematic state. Building on these insights, we propose a novel Proprioceptive Scenario Gating that adaptively integrates map uncertainty into trajectory prediction based on forecasts of the ego vehicle's future kinematics. This lightweight, self-supervised approach enhances the synergy between online mapping and trajectory prediction, providing interpretability around where uncertainty is advantageous and outperforming previous integration methods. Additionally, we introduce a Covariance-based Map Uncertainty approach that better aligns with map geometry, further improving trajectory prediction. Extensive ablation studies confirm the effectiveness of our approach, achieving up to 23.6% improvement in mapless trajectory prediction performance over the state-of-the-art method using the real-world nuScenes driving dataset. Our code, data, and models are publicly available at https://github.com/Ethan-Zheng136/Map-Uncertainty-for-Trajectory-Prediction.
Related papers
- Boundary-Guided Trajectory Prediction for Road Aware and Physically Feasible Autonomous Driving [11.436186697804835]
This paper proposes a novel framework that formulates trajectory prediction as a constrained regression guided by permissible driving directions and their boundaries.<n>We evaluate our approach on the Argoverse-2 dataset against the HPTR baseline.
arXiv Detail & Related papers (2025-05-10T19:21:00Z) - Map-Free Trajectory Prediction with Map Distillation and Hierarchical Encoding [8.857237929151795]
MFTP is a Map-Free Trajectory Prediction method that offers several advantages.
First, it eliminates the need for HD maps during inference while still benefiting from map priors during training via knowledge distillation.
Second, we present a novel hierarchical encoder that effectively extracts spatial-temporal agent features and aggregates them into multiple trajectory queries.
arXiv Detail & Related papers (2024-11-17T04:50:44Z) - HPNet: Dynamic Trajectory Forecasting with Historical Prediction Attention [76.37139809114274]
HPNet is a novel dynamic trajectory forecasting method.
We propose a Historical Prediction Attention module to automatically encode the dynamic relationship between successive predictions.
Our code is available at https://github.com/XiaolongTang23/HPNet.
arXiv Detail & Related papers (2024-04-09T14:42:31Z) - Producing and Leveraging Online Map Uncertainty in Trajectory Prediction [30.190497345299004]
We extend state-of-the-art online map estimation methods to additionally estimate uncertainty.
In doing so, we find that incorporating uncertainty yields up to 50% faster training convergence and up to 15% better prediction performance.
arXiv Detail & Related papers (2024-03-25T05:58:33Z) - Certified Human Trajectory Prediction [66.1736456453465]
We propose a certification approach tailored for trajectory prediction that provides guaranteed robustness.<n>To mitigate the inherent performance drop through certification, we propose a diffusion-based trajectory denoiser and integrate it into our method.<n>We demonstrate the accuracy and robustness of the certified predictors and highlight their advantages over the non-certified ones.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Enhancing Mapless Trajectory Prediction through Knowledge Distillation [19.626383744807068]
High-definition maps (HD maps) may suffer from the high cost of annotation or restrictions of law that limits their widespread use.
In this paper, we tackle the problem of improving the consistency of multi-modal prediction trajectories and the real road topology.
Our solution is generalizable for common trajectory prediction networks and does not bring extra computation burden.
arXiv Detail & Related papers (2023-06-25T09:05:48Z) - Improving Diversity of Multiple Trajectory Prediction based on
Map-adaptive Lane Loss [12.963269946571476]
This study proposes a novel loss function, textitLane Loss, that ensures map-adaptive diversity and accommodates geometric constraints.
Experiments performed on the Argoverse dataset show that the proposed method significantly improves the diversity of the predicted trajectories.
arXiv Detail & Related papers (2022-06-17T09:09:51Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.