論文の概要: GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
- arxiv url: http://arxiv.org/abs/2507.18546v1
- Date: Thu, 24 Jul 2025 16:11:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:44.031679
- Title: GLiNER2: An Efficient Multi-Task Information Extraction System with Schema-Driven Interface
- Title(参考訳): GLiNER2:スキーマ駆動インタフェースを用いた効率的なマルチタスク情報抽出システム
- Authors: Urchade Zaratiana, Gil Pasternak, Oliver Boyd, George Hurn-Maloney, Ash Lewis,
- Abstract要約: 我々は、名前付きエンティティ認識、テキスト分類、階層的構造化データ抽出をサポートするために、元のGLiNERアーキテクチャを強化する統一フレームワークであるGLiNER2を提案する。
実験では,抽出タスクと分類タスクの競合性能を実証し,デプロイメントアクセシビリティを大幅に改善した。
- 参考スコア(独自算出の注目度): 0.873811641236639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information extraction (IE) is fundamental to numerous NLP applications, yet existing solutions often require specialized models for different tasks or rely on computationally expensive large language models. We present GLiNER2, a unified framework that enhances the original GLiNER architecture to support named entity recognition, text classification, and hierarchical structured data extraction within a single efficient model. Built pretrained transformer encoder architecture, GLiNER2 maintains CPU efficiency and compact size while introducing multi-task composition through an intuitive schema-based interface. Our experiments demonstrate competitive performance across extraction and classification tasks with substantial improvements in deployment accessibility compared to LLM-based alternatives. We release GLiNER2 as an open-source pip-installable library with pre-trained models and documentation at https://github.com/fastino-ai/GLiNER2.
- Abstract(参考訳): 情報抽出(IE)は多くのNLPアプリケーションの基本であるが、既存のソリューションでは様々なタスクのための特別なモデルを必要とする場合が多い。
GLiNER2は、GLiNERアーキテクチャを拡張し、単一の効率的なモデル内で名前付きエンティティ認識、テキスト分類、階層的構造化データ抽出をサポートする統合フレームワークである。
事前トレーニングされたトランスフォーマーエンコーダアーキテクチャを構築したGLiNER2は、CPU効率とコンパクトなサイズを維持しつつ、直感的なスキーマベースのインタフェースを通じてマルチタスク構成を導入している。
本実験では,LLMによる代替手法と比較して,デプロイメントアクセシビリティが大幅に向上した抽出タスクと分類タスクの競合性能を実証した。
我々は、GLiNER2をオープンソースのip- installableライブラリとしてリリースし、事前トレーニングされたモデルとドキュメントをhttps://github.com/fastino-ai/GLiNER2で公開しています。
関連論文リスト
- GLiDRE: Generalist Lightweight model for Document-level Relation Extraction [0.5130175508025212]
本稿では,文書レベルの関係抽出のための新しいモデルであるGLiDREを紹介する。
我々は、Re-DocREDデータセット上のさまざまなデータ設定における最先端モデルに対してGLiDREをベンチマークする。
以上の結果から,GLiDREは数ショットのシナリオで最先端のパフォーマンスを実現していることがわかった。
論文 参考訳(メタデータ) (2025-08-01T16:33:13Z) - SEKI: Self-Evolution and Knowledge Inspiration based Neural Architecture Search via Large Language Models [11.670056503731905]
本稿では,新しい大規模言語モデル (LLM) に基づくニューラルアーキテクチャ探索 (NAS) 手法であるSEKIを紹介する。
現代のLLMにおけるチェーン・オブ・シント(CoT)パラダイムにインスパイアされたセキは、自己進化と知識蒸留という2つの重要な段階で動作している。
論文 参考訳(メタデータ) (2025-02-27T09:17:49Z) - Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models [64.28420991770382]
Data-Juicer 2.0は、テキスト、画像、ビデオ、オーディオのモダリティにまたがるデータ処理オペレーターがバックアップするデータ処理システムである。
データ分析、アノテーション、基礎モデルポストトレーニングなど、より重要なタスクをサポートする。
さまざまな研究分野やAlibaba Cloud PAIのような現実世界の製品で広く採用されている。
論文 参考訳(メタデータ) (2024-12-23T08:29:57Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端(SOTA)GNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks [0.0]
我々は,小さなエンコーダモデルであると同時に,様々な情報抽出タスクに使用できる新しい種類のGLiNERモデルを導入する。
我々のモデルは,ゼロショットNERベンチマークにおけるSoTA性能を達成し,質問応答,要約,関係抽出タスクにおける主要な性能を実現した。
論文 参考訳(メタデータ) (2024-06-14T13:54:29Z) - GLiNER: Generalist Model for Named Entity Recognition using
Bidirectional Transformer [4.194768796374315]
名前付きエンティティ認識(NER)は、様々な自然言語処理(NLP)アプリケーションに必須である。
本稿では,任意の種類のエンティティを識別するために訓練されたコンパクトなNERモデルを提案する。
我々のモデルであるGLiNERは、Large Language Models (LLM) の遅いシーケンシャルトークン生成に対するアドバンテージである並列エンティティ抽出を容易にする。
論文 参考訳(メタデータ) (2023-11-14T20:39:12Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
特徴抽出手順と早期分類タスクを分離する動的知覚器(Dyn-Perceiver)を提案する。
特徴ブランチは画像の特徴を抽出し、分類ブランチは分類タスクに割り当てられた遅延コードを処理する。
早期出口は分類枝に限られており、低レベルの特徴において線形分離性は不要である。
論文 参考訳(メタデータ) (2023-06-20T03:00:22Z) - ELIT: Emory Language and Information Toolkit [15.340540198612826]
ELITは、コアタスクのためのトランスフォーマーベースのエンドツーエンドモデルを提供する包括的なフレームワークである。
ELITは効率のよいマルチタスク学習(MTL)モデルを備えており、レムマティゼーション、部分音声タグ付け、名前付きエンティティ認識、依存性解析、候補解析、セマンティックロールラベリング、AMR解析など、多くの下流タスクがある。
論文 参考訳(メタデータ) (2021-09-08T19:50:07Z) - AutoBERT-Zero: Evolving BERT Backbone from Scratch [94.89102524181986]
そこで本稿では,提案するハイブリッドバックボーンアーキテクチャを自動検索するOP-NASアルゴリズムを提案する。
提案するOP-NASの効率を向上させるために,探索アルゴリズムと候補モデルの評価を最適化する。
実験の結果、検索されたアーキテクチャ(AutoBERT-Zero)は、様々な下流タスクにおいてBERTとそのバリエーションの異なるモデル容量を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-07-15T16:46:01Z) - GroupBERT: Enhanced Transformer Architecture with Efficient Grouped
Structures [57.46093180685175]
トランスフォーマー層の構造を改良し,より効率的なアーキテクチャを実現する。
自己認識モジュールを補完する畳み込みモジュールを追加し、局所的およびグローバルな相互作用の学習を分離する。
得られたアーキテクチャを言語表現学習に適用し、異なるスケールのBERTモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-06-10T15:41:53Z) - A Data-Centric Framework for Composable NLP Workflows [109.51144493023533]
アプリケーションドメインにおける経験的自然言語処理システム(例えば、ヘルスケア、ファイナンス、教育)は、複数のコンポーネント間の相互運用を伴う。
我々は,このような高度なNLPの高速な開発を支援するために,統一的なオープンソースフレームワークを構築した。
論文 参考訳(メタデータ) (2021-03-02T16:19:44Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。