論文の概要: ELIT: Emory Language and Information Toolkit
- arxiv url: http://arxiv.org/abs/2109.03903v1
- Date: Wed, 8 Sep 2021 19:50:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-10 14:22:17.742267
- Title: ELIT: Emory Language and Information Toolkit
- Title(参考訳): ELIT:エモリー言語と情報ツールキット
- Authors: Han He and Liyan Xu and Jinho D. Choi
- Abstract要約: ELITは、コアタスクのためのトランスフォーマーベースのエンドツーエンドモデルを提供する包括的なフレームワークである。
ELITは効率のよいマルチタスク学習(MTL)モデルを備えており、レムマティゼーション、部分音声タグ付け、名前付きエンティティ認識、依存性解析、候補解析、セマンティックロールラベリング、AMR解析など、多くの下流タスクがある。
- 参考スコア(独自算出の注目度): 15.340540198612826
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce ELIT, the Emory Language and Information Toolkit, which is a
comprehensive NLP framework providing transformer-based end-to-end models for
core tasks with a special focus on memory efficiency while maintaining
state-of-the-art accuracy and speed. Compared to existing toolkits, ELIT
features an efficient Multi-Task Learning (MTL) model with many downstream
tasks that include lemmatization, part-of-speech tagging, named entity
recognition, dependency parsing, constituency parsing, semantic role labeling,
and AMR parsing. The backbone of ELIT's MTL framework is a pre-trained
transformer encoder that is shared across tasks to speed up their inference.
ELIT provides pre-trained models developed on a remix of eight datasets. To
scale up its service, ELIT also integrates a RESTful Client/Server combination.
On the server side, ELIT extends its functionality to cover other tasks such as
tokenization and coreference resolution, providing an end user with agile
research experience. All resources including the source codes, documentation,
and pre-trained models are publicly available at
https://github.com/emorynlp/elit.
- Abstract(参考訳): 我々はELIT, Emory Language and Information Toolkitを紹介した。これはコアタスクのためのトランスフォーマーベースのエンドツーエンドモデルを提供する包括的NLPフレームワークで, 最先端の精度とスピードを維持しつつ, メモリ効率に特化している。
既存のツールキットと比較して、ELITは効率のよいマルチタスク学習(MTL)モデルを備えており、レムマティゼーション、部分音声タグ付け、名前付きエンティティ認識、依存性解析、候補解析、セマンティックロールラベリング、AMR解析など多くの下流タスクがある。
ELITのMTLフレームワークのバックボーンは、トレーニング済みのトランスフォーマーエンコーダで、タスク間で共有され、推論を高速化する。
ELITは、8つのデータセットのリミックスに基づいて開発された事前訓練されたモデルを提供する。
サービスのスケールアップには、RESTful Client/Serverの組み合わせも統合されている。
サーバ側では、elitはその機能をトークン化やコリファレンス解決といった他のタスクをカバーするように拡張し、エンドユーザにアジャイルリサーチエクスペリエンスを提供する。
ソースコード、ドキュメンテーション、事前訓練済みモデルを含むすべてのリソースはhttps://github.com/emorynlp/elit.comで公開されている。
関連論文リスト
- Pilot: Building the Federated Multimodal Instruction Tuning Framework [79.56362403673354]
本フレームワークは、視覚エンコーダとLCMのコネクタに「アダプタのアダプタ」の2つの段階を統合する。
ステージ1では視覚情報からタスク固有の特徴とクライアント固有の特徴を抽出する。
ステージ2では、クロスタスクインタラクションを実行するために、クロスタスクMixture-of-Adapters(CT-MoA)モジュールを構築します。
論文 参考訳(メタデータ) (2025-01-23T07:49:24Z) - SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution [56.9361004704428]
大規模言語モデル(LLM)は、様々な複雑なタスクにまたがる顕著な習熟度を示している。
SWE-Fixerは、GitHubの問題を効果的かつ効率的に解決するために設計された、新しいオープンソースフレームワークである。
我々は,SWE-Bench LiteとVerifiedベンチマークに対するアプローチを評価し,オープンソースモデル間の最先端性能を実現する。
論文 参考訳(メタデータ) (2025-01-09T07:54:24Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - The Compressor-Retriever Architecture for Language Model OS [20.56093501980724]
オペレーティングシステム(OS)のコアコンポーネントとして言語モデルを用いるという概念について検討する。
このようなLM OSを実現する上で重要な課題は、寿命の長いコンテキストを管理し、セッション間のステートフルネスを確保することだ。
本稿では,生涯のコンテキスト管理のために設計されたモデル非依存アーキテクチャであるコンプレッサー・レトリバーを紹介する。
論文 参考訳(メタデータ) (2024-09-02T23:28:15Z) - LiPost: Improved Content Understanding With Effective Use of Multi-task Contrastive Learning [2.611731148829789]
多様なセマンティックラベリングタスクから得られたデータとマルチタスクのコントラスト学習を用いて、事前学習されたトランスフォーマーベースのLLMを微調整する。
我々のモデルはゼロショット学習のベースラインを上回り、多言語サポートの改善を提供する。
この作業は、LLMを特定のアプリケーションにカスタマイズし、微調整するLinkedInの垂直チームにとって、堅牢な基盤を提供する。
論文 参考訳(メタデータ) (2024-05-18T17:28:29Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - Recommender AI Agent: Integrating Large Language Models for Interactive
Recommendations [53.76682562935373]
我々は,LLMを脳として,レコメンダモデルをツールとして使用する,textbfInteRecAgentという効率的なフレームワークを紹介した。
InteRecAgentは会話レコメンデーションシステムとして満足度を達成し、汎用LLMよりも優れる。
論文 参考訳(メタデータ) (2023-08-31T07:36:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Exploiting Features and Logits in Heterogeneous Federated Learning [0.2538209532048866]
フェデレーテッド・ラーニング(FL)は、エッジデバイスの管理を容易にすることで、共有モデルを協調的にトレーニングする。
本稿では,特徴量とロジットを管理することによって異種クライアントモデルをサポートする新しいデータフリーFL法を提案する。
Feloとは異なり、サーバはVeroに条件付きVAEを持ち、これは中レベルの機能をトレーニングし、ラベルに従って合成機能を生成するために使用される。
論文 参考訳(メタデータ) (2022-10-27T15:11:46Z) - Enabling Un-/Semi-Supervised Machine Learning for MDSE of the Real-World
CPS/IoT Applications [0.5156484100374059]
我々は、スマートサイバー物理システム(CPS)とIoT(Internet of Things)の現実的なユースケースシナリオに対して、ドメイン固有モデル駆動ソフトウェアエンジニアリング(MDSE)をサポートする新しいアプローチを提案する。
人工知能(AI)の本質において利用可能なデータの大部分はラベルが付けられていないと我々は主張する。したがって、教師なしおよび/または半教師なしのMLアプローチが実践的な選択である。
提案手法は,既存の最先端MDSEツールと完全に実装され,CPS/IoTドメインを提供する。
論文 参考訳(メタデータ) (2021-07-06T15:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。