論文の概要: On the Performance of Concept Probing: The Influence of the Data (Extended Version)
- arxiv url: http://arxiv.org/abs/2507.18550v1
- Date: Thu, 24 Jul 2025 16:18:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-25 15:10:44.110657
- Title: On the Performance of Concept Probing: The Influence of the Data (Extended Version)
- Title(参考訳): 概念探索の性能について:データの影響(拡張版)
- Authors: Manuel de Sousa Ribeiro, Afonso Leote, João Leite,
- Abstract要約: 概念探索は、モデルの内部表現を人間の定義した関心の概念にマッピングするために、追加の分類器を訓練することで機能する。
概念探索の研究は、主に調査対象のモデルや、探索対象のモデル自体に焦点を当てている。
本稿では,探索モデルの訓練に使用するデータが性能に与える影響について検討する。
- 参考スコア(独自算出の注目度): 3.2443914909457594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Concept probing has recently garnered increasing interest as a way to help interpret artificial neural networks, dealing both with their typically large size and their subsymbolic nature, which ultimately renders them unfeasible for direct human interpretation. Concept probing works by training additional classifiers to map the internal representations of a model into human-defined concepts of interest, thus allowing humans to peek inside artificial neural networks. Research on concept probing has mainly focused on the model being probed or the probing model itself, paying limited attention to the data required to train such probing models. In this paper, we address this gap. Focusing on concept probing in the context of image classification tasks, we investigate the effect of the data used to train probing models on their performance. We also make available concept labels for two widely used datasets.
- Abstract(参考訳): 概念探索は、一般的に大きなサイズとサブシンボリックな性質の両方を扱う、人工ニューラルネットワークの解釈を支援する手段として、最近ますます関心を集めている。
概念探索は、モデルの内部表現を人間の定義した関心の概念にマッピングするために、追加の分類器を訓練することで機能する。
概念探索の研究は、主に調査対象のモデルや探索モデル自体に焦点を当てており、そのような探索モデルを訓練するために必要なデータに限定的に注意を払っている。
本稿では,このギャップに対処する。
画像分類タスクの文脈における概念探索に焦点をあてて,探索モデルの学習に使用するデータの有効性について検討する。
また、広く使われている2つのデータセットのコンセプトラベルも用意しています。
関連論文リスト
- Concept Probing: Where to Find Human-Defined Concepts (Extended Version) [3.2443914909457594]
本研究では,ニューラルネットワークモデルにおけるどのレイヤの表現を,人が定義した関心を持つ概念を探索する際に考慮すべきかを自動的に識別する手法を提案する。
我々は、異なるニューラルネットワークモデルとデータセットに対する徹底的な経験的分析を通じて、この結果を検証する。
論文 参考訳(メタデータ) (2025-07-24T16:30:10Z) - Concept-Guided Interpretability via Neural Chunking [54.73787666584143]
ニューラルネットワークは、トレーニングデータの規則性を反映した生の集団活動のパターンを示す。
本稿では,ラベルの可利用性と次元性に基づいて,これら新たな実体を抽出する3つの手法を提案する。
私たちの研究は、認知原則と自然主義的データの構造の両方を活用する、解釈可能性の新しい方向性を指し示しています。
論文 参考訳(メタデータ) (2025-05-16T13:49:43Z) - Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
テキストと画像の拡散モデルに光を流す新しいHOI検出器であるDIFfusionHOIを紹介する。
まず、埋め込み空間における人間と物体の関係パターンの表現をインバージョンベースで学習する戦略を考案する。
これらの学習された関係埋め込みはテキストのプロンプトとして機能し、スタイア拡散モデルが特定の相互作用を記述する画像を生成する。
論文 参考訳(メタデータ) (2024-10-26T12:00:33Z) - Automatic Discovery of Visual Circuits [66.99553804855931]
本稿では,視覚モデルにおける視覚的概念の認識の基盤となる計算グラフのサブグラフを抽出するスケーラブルな手法について検討する。
提案手法は, モデル出力に因果的に影響を及ぼす回路を抽出し, これらの回路を編集することで, 敵攻撃から大きな事前学習モデルを守ることができることがわかった。
論文 参考訳(メタデータ) (2024-04-22T17:00:57Z) - Closely Interactive Human Reconstruction with Proxemics and Physics-Guided Adaption [64.07607726562841]
既存の人間再建アプローチは主に、正確なポーズの回復や侵入を避けることに焦点を当てている。
本研究では,モノクロ映像から密に対話的な人間を再構築する作業に取り組む。
本稿では,視覚情報の欠如を補うために,確率的行動や物理からの知識を活用することを提案する。
論文 参考訳(メタデータ) (2024-04-17T11:55:45Z) - Attributing Learned Concepts in Neural Networks to Training Data [5.930268338525991]
コンバージェンス(収束)の証拠として,概念の上位1万個の画像を取り除き,モデルの再トレーニングを行うと,ネットワーク内の概念の位置が変化しない。
このことは、概念の発達を知らせる特徴が、概念形成の堅牢さを暗示して、その先例にまたがるより拡散した方法で広がることを示唆している。
論文 参考訳(メタデータ) (2023-10-04T20:26:59Z) - Hierarchical Semantic Tree Concept Whitening for Interpretable Image
Classification [19.306487616731765]
ポストホック分析は、モデルに自然に存在するパターンやルールのみを発見することができる。
我々は、隠された層における人間の理解可能な概念の表現を変えるために、積極的に知識を注入する。
本手法は,モデル分類性能に悪影響を及ぼすことなく,セマンティックな概念の絡み合いを良くし,モデルの解釈可能性を向上させる。
論文 参考訳(メタデータ) (2023-07-10T04:54:05Z) - On Modifying a Neural Network's Perception [3.42658286826597]
本研究では,人間の定義した概念に対して,人工ニューラルネットワークが知覚しているものを修正する手法を提案する。
提案手法を異なるモデルで検証し、実行された操作がモデルによって適切に解釈されているかどうかを評価し、それらに対してどのように反応するかを解析する。
論文 参考訳(メタデータ) (2023-03-05T12:09:37Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - Human-Understandable Decision Making for Visual Recognition [30.30163407674527]
モデル学習プロセスに人間の知覚の優先順位を組み込むことにより,深層ニューラルネットワークを訓練する新たなフレームワークを提案する。
提案モデルの有効性を2つの古典的視覚認識タスクで評価する。
論文 参考訳(メタデータ) (2021-03-05T02:07:33Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。