Gait Recognition Based on Tiny ML and IMU Sensors
- URL: http://arxiv.org/abs/2507.18627v1
- Date: Thu, 24 Jul 2025 17:59:08 GMT
- Title: Gait Recognition Based on Tiny ML and IMU Sensors
- Authors: Jiahang Zhang, Mingtong Chen, Zhengbao Yang,
- Abstract summary: This project presents the development of a gait recognition system using Tiny Machine Learning (Tiny ML) and Inertial Measurement Unit (IMU) sensors.<n>The system leverages the XIAO-nRF52840 Sense microcontroller and the LSM6DS3 IMU sensor to capture motion data, including acceleration and angular velocity, from four distinct activities.<n>The data collected is processed through Edge Impulse, an edge AI platform, which enables the training of machine learning models that can be deployed directly onto the microcontroller for real-time activity classification.
- Score: 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project presents the development of a gait recognition system using Tiny Machine Learning (Tiny ML) and Inertial Measurement Unit (IMU) sensors. The system leverages the XIAO-nRF52840 Sense microcontroller and the LSM6DS3 IMU sensor to capture motion data, including acceleration and angular velocity, from four distinct activities: walking, stationary, going upstairs, and going downstairs. The data collected is processed through Edge Impulse, an edge AI platform, which enables the training of machine learning models that can be deployed directly onto the microcontroller for real-time activity classification.The data preprocessing step involves extracting relevant features from the raw sensor data using techniques such as sliding windows and data normalization, followed by training a Deep Neural Network (DNN) classifier for activity recognition. The model achieves over 80% accuracy on a test dataset, demonstrating its ability to classify the four activities effectively. Additionally, the platform enables anomaly detection, further enhancing the robustness of the system. The integration of Tiny ML ensures low-power operation, making it suitable for battery-powered or energy-harvesting devices.
Related papers
- CADDI: An in-Class Activity Detection Dataset using IMU data from low-cost sensors [3.3860149185538613]
We present a novel dataset for in-class activity detection using affordable IMU sensors.<n>The dataset comprises 19 diverse activities, both instantaneous and continuous, performed by 12 participants in typical classroom scenarios.<n>It includes accelerometer, gyroscope, rotation vector data, and synchronized stereo images, offering a comprehensive resource for developing multimodal algorithms using sensor and visual data.
arXiv Detail & Related papers (2025-03-04T18:29:57Z) - Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - An Automated Approach to Collecting and Labeling Time Series Data for Event Detection Using Elastic Node Hardware [18.15754187896287]
This paper introduces a novel embedded system designed to autonomously label sensor data directly on IoT devices.
We present an integrated hardware and software solution equipped with specialized labeling sensors that streamline the capture and labeling of diverse types of sensor data.
arXiv Detail & Related papers (2024-07-06T15:19:16Z) - HARMamba: Efficient and Lightweight Wearable Sensor Human Activity Recognition Based on Bidirectional Mamba [7.412537185607976]
Wearable sensor-based human activity recognition (HAR) is a critical research domain in activity perception.
This study introduces HARMamba, an innovative light-weight and versatile HAR architecture that combines selective bidirectional State Spaces Model and hardware-aware design.
HarMamba outperforms contemporary state-of-the-art frameworks, delivering comparable or better accuracy with significantly reducing computational and memory demands.
arXiv Detail & Related papers (2024-03-29T13:57:46Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
We propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities.
We integrate a highly efficient machine learning model placed near the sensor.
This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information.
arXiv Detail & Related papers (2024-02-03T05:41:39Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Model is a scalable data engine for object detection.
DiffusionEngine (DE) provides high-quality detection-oriented training pairs in a single stage.
arXiv Detail & Related papers (2023-09-07T17:55:01Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLoc is a novel unified neural modeling approach for localization with multi-sensor input in all weather conditions.
Our method is extensively evaluated on Oxford Radar RobotCar, ApolloSouthBay and Perth-WA datasets.
arXiv Detail & Related papers (2023-07-03T04:10:55Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Learning-Based UE Classification in Millimeter-Wave Cellular Systems
With Mobility [67.81523988596841]
Millimeter-wave cellular communication requires beamforming procedures that enable alignment of the transmitter and receiver beams as the user equipment (UE) moves.
For efficient beam tracking it is advantageous to classify users according to their traffic and mobility patterns.
Research to date has demonstrated efficient ways of machine learning based UE classification.
arXiv Detail & Related papers (2021-09-13T12:00:45Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
Classification between different activities in an indoor environment using wireless signals is an emerging technology for various applications.
In this paper, we analyze classification of moving objects by employing machine learning on real data from a massive multi-input-multi-output (MIMO) system in an indoor environment.
arXiv Detail & Related papers (2021-02-09T15:48:35Z) - Yet it moves: Learning from Generic Motions to Generate IMU data from
YouTube videos [5.008235182488304]
We show how we can train a regression model on generic motions for both accelerometer and gyro signals to generate synthetic IMU data.
We demonstrate that systems trained on simulated data generated by our regression model can come to within around 10% of the mean F1 score of a system trained on real sensor data.
arXiv Detail & Related papers (2020-11-23T18:16:46Z) - Machine learning approaches for identifying prey handling activity in
otariid pinnipeds [12.814241588031685]
This paper focuses on the identification of prey handling activity in seals.
Data taken into consideration are streams of 3D accelerometers and depth sensors values collected by devices attached directly on seals.
We propose an automatic model based on Machine Learning (ML) algorithms.
arXiv Detail & Related papers (2020-02-10T15:30:08Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.