論文の概要: A Regression-Based Share Market Prediction Model for Bangladesh
- arxiv url: http://arxiv.org/abs/2507.18643v1
- Date: Thu, 10 Jul 2025 00:22:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-03 20:19:02.820928
- Title: A Regression-Based Share Market Prediction Model for Bangladesh
- Title(参考訳): バングラデシュにおける回帰型株式市場予測モデル
- Authors: Syeda Tasnim Fabiha, Rubaiyat Jahan Mumu, Farzana Aktar, B M Mainul Hossain,
- Abstract要約: 本稿では,時系列データから予測線形モデルを生成できないことを示す。
株価の変動性に異なる要因の個人的意義が特定され、説明されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Share market is one of the most important sectors of economic development of a country. Everyday almost all companies issue their shares and investors buy and sell shares of these companies. Generally investors want to buy shares of the companies whose market liquidity is comparatively greater. Market liquidity depends on the average price of a share. In this paper, a thorough linear regression analysis has been performed on the stock market data of Dhaka Stock Exchange. Later, the linear model has been compared with random forest based on different metrics showing better results for random forest model. However, the amount of individual significance of different factors on the variability of stock price has been identified and explained. This paper also shows that the time series data is not capable of generating a predictive linear model for analysis.
- Abstract(参考訳): 株式市場は国の経済発展において最も重要な分野の1つである。
ほぼすべての企業が毎日株を発行し、投資家はこれらの会社の株を売買している。
投資家は通常、市場流動性が比較的大きい会社の株式を買いたいと思っている。
市場流動性は株の平均価格に依存する。
本稿では、ダッカ証券取引所の株式市場データについて、徹底的な線形回帰分析を行った。
その後、線形モデルはランダム林モデルにより良い結果を示す様々な指標に基づいてランダム林と比較された。
しかし、株価の変動性に対する異なる要因の個人的重要性の定量化と説明がなされている。
また,時系列データから予測線形モデルを生成できないことを示す。
関連論文リスト
- Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
金融市場分析のための画期的な枠組みを提示する。
このアプローチは、投資家の期待を共同でモデル化し、潜伏する株価関係を自動的に掘り下げる最初の方法だ。
私たちのモデルは年率10%を超えるリターンを継続的に達成します。
論文 参考訳(メタデータ) (2023-06-01T01:36:51Z) - Transformer-Based Deep Learning Model for Stock Price Prediction: A Case
Study on Bangladesh Stock Market [0.0]
本稿では、ダッカ証券取引所(DSE)に上場する8銘柄の価格変動を予測するためのトランスフォーマーモデルの適用に焦点を当てる。
本実験は,ほとんどの株式において有望な結果と許容される根平均二乗誤差を示すものである。
論文 参考訳(メタデータ) (2022-08-17T14:03:28Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
ドイツでは、日内電気価格は通常、EPEXスポット市場の1日当たりの価格に異なる時間帯で変動する。
本研究は,日頭契約の日内価格差をモデル化する確率論的モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T08:38:20Z) - HiSA-SMFM: Historical and Sentiment Analysis based Stock Market
Forecasting Model [3.6704226968275258]
本研究の目的は、企業の金融株の将来を精度良く予測することである。
感情分析の分野での既存の研究を分析した結果、株価の動きとニュース記事の発行との間には強い相関関係があることが判明した。
論文 参考訳(メタデータ) (2022-03-10T17:03:38Z) - Analysis of Sectoral Profitability of the Indian Stock Market Using an
LSTM Regression Model [0.0]
本稿では,所定時間間隔でウェブから過去の株価を自動的に抽出する,長期記憶(LSTM)アーキテクチャに基づく最適化された予測モデルを提案する。
このモデルは、インド国立証券取引所(NSE)に上場している7つのセクターから70の重要株式の予測結果に基づいて、取引の売買のために展開されている。
結果は、このモデルが将来の株価を予測する上で非常に正確であることを示唆している。
論文 参考訳(メタデータ) (2021-11-09T07:50:48Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Stock price prediction using BERT and GAN [0.0]
本稿では、株価を予測するための最先端の手法の集合体を提案する。
これはGoogle for Natural Language Processing (NLP)によって事前訓練されたトランスフォーマーモデルであるBERTのバージョンを使用している。
その後、GAN(Generative Adversarial Network)は、Apple Inc.の株価を、技術指標、さまざまな国の株価指数、いくつかの商品、そして歴史的価格と評価スコアを用いて予測する。
論文 参考訳(メタデータ) (2021-07-18T18:31:43Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。