Market Making Strategies with Reinforcement Learning
- URL: http://arxiv.org/abs/2507.18680v1
- Date: Thu, 24 Jul 2025 16:17:49 GMT
- Title: Market Making Strategies with Reinforcement Learning
- Authors: Óscar Fernández Vicente,
- Abstract summary: Market makers (MMs) play a fundamental role in providing liquidity, yet face significant challenges arising from inventory risk, competition, and non-stationary market dynamics.<n>This research explores how Reinforcement Learning can be employed to develop autonomous, adaptive, and profitable market making strategies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This thesis presents the results of a comprehensive research project focused on applying Reinforcement Learning (RL) to the problem of market making in financial markets. Market makers (MMs) play a fundamental role in providing liquidity, yet face significant challenges arising from inventory risk, competition, and non-stationary market dynamics. This research explores how RL, particularly Deep Reinforcement Learning (DRL), can be employed to develop autonomous, adaptive, and profitable market making strategies. The study begins by formulating the MM task as a reinforcement learning problem, designing agents capable of operating in both single-agent and multi-agent settings within a simulated financial environment. It then addresses the complex issue of inventory management using two complementary approaches: reward engineering and Multi-Objective Reinforcement Learning (MORL). While the former uses dynamic reward shaping to guide behavior, the latter leverages Pareto front optimization to explicitly balance competing objectives. To address the problem of non-stationarity, the research introduces POW-dTS, a novel policy weighting algorithm based on Discounted Thompson Sampling. This method allows agents to dynamically select and combine pretrained policies, enabling continual adaptation to shifting market conditions. The experimental results demonstrate that the proposed RL-based approaches significantly outperform traditional and baseline algorithmic strategies across various performance metrics. Overall, this research thesis contributes new methodologies and insights for the design of robust, efficient, and adaptive market making agents, reinforcing the potential of RL to transform algorithmic trading in complex financial systems.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Developing A Multi-Agent and Self-Adaptive Framework with Deep Reinforcement Learning for Dynamic Portfolio Risk Management [1.2016264781280588]
A multi-agent reinforcement learning (RL) approach is proposed to balance the trade-off between the overall portfolio returns and their potential risks.
The obtained empirical results clearly reveal the potential strengths of our proposed MASA framework.
arXiv Detail & Related papers (2024-02-01T11:31:26Z) - From Bandits Model to Deep Deterministic Policy Gradient, Reinforcement
Learning with Contextual Information [4.42532447134568]
In this study, we use two methods to overcome the issue with contextual information.
In order to investigate strategic trading in quantitative markets, we merged the earlier financial trading strategy known as constant proportion portfolio insurance ( CPPI) into deep deterministic policy gradient (DDPG)
The experimental results show that both methods can accelerate the progress of reinforcement learning to obtain the optimal solution.
arXiv Detail & Related papers (2023-10-01T11:25:20Z) - Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in
High-Frequency Trading: A Comprehensive Exploration [0.0]
Reinforcement Learning (RL) is a branch of machine learning where agents learn by interacting with their environment.
This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for High-Frequency Trading (HFT) scenarios.
Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns.
arXiv Detail & Related papers (2023-09-13T06:15:40Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - Product Segmentation Newsvendor Problems: A Robust Learning Approach [6.346881818701668]
Product segmentation newsvendor problem is a new variant of the newsvendor problem.
We propose a new paradigm termed robust learning to increase the attractiveness of robust policies.
arXiv Detail & Related papers (2022-07-08T10:13:10Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.