論文の概要: Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
- arxiv url: http://arxiv.org/abs/2507.18742v1
- Date: Thu, 24 Jul 2025 18:44:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.724644
- Title: Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
- Title(参考訳): 仕様の自己補正:テスト時間リファインメントによるコンテキスト内リワードハックの軽減
- Authors: Víctor Gallego,
- Abstract要約: 言語モデル(LM)は、コンテキスト内報酬ハッキングの影響を受けやすい。
SSC(Specification Self-Correction)は、LMが自身の指針仕様内の欠陥を識別し、修正することを可能にする新しいフレームワークである。
SSCは多段階の推論プロセスを採用しており、まずモデルが潜在的に汚染された仕様に基づいて応答を生成し、その出力を批判し、次に仕様自体を修正して悪用可能な抜け穴を取り除く。
- 参考スコア(独自算出の注目度): 0.6526824510982799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models (LMs) are susceptible to in-context reward hacking, where they exploit flaws in tainted or faulty written specifications or rubrics to achieve high scores without fulfilling the user's true intent. We introduce Specification Self-Correction (SSC), a novel, test-time framework that enables an LM to identify and correct flaws within its own guiding specification. SSC employs a multi-step inference process where the model first generates a response based on a potentially tainted specification, critiques its output, and then revises the specification itself to remove the exploitable loophole. A final, more robust response is then generated using this self-corrected specification. Across experiments spanning creative writing and agentic coding tasks with several LMs, we demonstrate that while models initially game tainted specifications in 50-70\% of cases, the SSC process reduces this vulnerability by over 90\%. This dynamic repair occurs at inference time, requires no weight modification, and leads to more robustly aligned model behavior. Code at https://github.com/vicgalle/specification-self-correction .
- Abstract(参考訳): 言語モデル(LM)はコンテキスト内報酬のハッキングの影響を受けやすいため、ユーザの真の意図を満たさずに高いスコアを達成するために、汚染された、あるいは欠陥のある仕様やルーブリックの欠陥を悪用する。
SSC(Specification Self-Correction)は、LMが自身のガイド仕様内の欠陥を識別し、修正できる新しいテストタイムフレームワークである。
SSCは多段階の推論プロセスを採用しており、まずモデルが潜在的に汚染された仕様に基づいて応答を生成し、その出力を批判し、次に仕様自体を修正して悪用可能な抜け穴を取り除く。
そして、この自己修正仕様を使って、より堅牢な応答が生成される。
いくつかのLMを用いて、創造的記述やエージェント的コーディングタスクにまたがる実験により、当初、50~70 %のケースにおいて、モデルを汚染した仕様をゲームする一方で、SSCプロセスは、この脆弱性を90 %以上削減することを示した。
この動的修復は推論時に発生し、重量修正を必要とせず、より堅牢に整合したモデル行動をもたらす。
コードネームはhttps://github.com/vicgalle/specification-self-correction。
関連論文リスト
- ASCoT: An Adaptive Self-Correction Chain-of-Thought Method for Late-Stage Fragility in LLMs [16.266957200961908]
CoT(Chain-of-Thought)の促進により,LLM(Large Language Models)の推論機能が大幅に向上した。
CoT鎖の後半で導入されたエラーは、当初と同一のエラーよりも、最終回答が著しく破損する可能性が高い。
本稿では、この脆弱性に対処するために、適応自己補正連鎖法(ASCoT)を導入する。
論文 参考訳(メタデータ) (2025-08-07T11:26:40Z) - RePaCA: Leveraging Reasoning Large Language Models for Static Automated Patch Correctness Assessment [0.0]
本稿では,Large Language Models (LLM) を利用した新しい静的APCA手法であるRePaCAを紹介する。
提案手法は,83.1%の精度と84.8%のF1スコアで最先端の性能を実現する。
論文 参考訳(メタデータ) (2025-07-30T11:21:09Z) - When LLMs Copy to Think: Uncovering Copy-Guided Attacks in Reasoning LLMs [30.532439965854767]
大規模言語モデル(LLM)は、脆弱性検出やコード理解といったタスクを可能にする自動コード解析に不可欠なものになっている。
本稿では,CGA(Copy-Guided Attacks)と呼ばれる,新たなプロンプトベースの攻撃のクラスを特定し,検討する。
CGAは、コード解析タスクにおいて、無限ループ、早期終了、偽の拒絶、意味的歪みを確実に誘導することを示す。
論文 参考訳(メタデータ) (2025-07-22T17:21:36Z) - Specification-Guided Repair of Arithmetic Errors in Dafny Programs using LLMs [84.30534714651093]
本稿では,検証を意識したプログラミング言語であるDafnyに対して,革新的なAPRツールを提案する。
プログラム内の各ステートメントの状態を決定するために、Hoare Logicの使用を含む一連のステップを通じて、障害をローカライズします。
実世界のDafnyプログラムのベンチマークであるDafnyBenchを用いて,我々のアプローチを評価する。
論文 参考訳(メタデータ) (2025-07-04T15:36:12Z) - Chain-of-Code Collapse: Reasoning Failures in LLMs via Adversarial Prompting in Code Generation [0.3495246564946556]
大規模言語モデル(LLM)は複雑な推論を必要とするタスクにおいて顕著な成功を収めた。
これらのモデルは本当に理由があるのか、それとも浅い統計パターンを利用するだけなのか?
ここでは、意味論的に忠実だが逆向きに構造化された急激な摂動のスイートを導入することで、LCMの推論の堅牢性について検討する。
論文 参考訳(メタデータ) (2025-06-08T02:43:46Z) - Robust Anti-Backdoor Instruction Tuning in LVLMs [53.766434746801366]
大規模視覚言語モデル(LVLM)のための軽量で認証に依存しない防御フレームワークについて紹介する。
私たちのフレームワークは、命令チューニングの下で、アダプタモジュールとテキスト埋め込み層のみを微調整します。
Flickr30kとMSCOCOに対する7つの攻撃に対する実験は、我々の攻撃の成功率をほぼゼロに低下させることを示した。
論文 参考訳(メタデータ) (2025-06-04T01:23:35Z) - Analysing Zero-Shot Readability-Controlled Sentence Simplification [54.09069745799918]
本研究では,異なる種類の文脈情報が,所望の可読性を持つ文を生成するモデルの能力に与える影響について検討する。
結果から,全ての試験されたモデルは,原文の制限や特徴のため,文の簡略化に苦慮していることがわかった。
実験では、RCTSに合わせたより良い自動評価指標の必要性も強調した。
論文 参考訳(メタデータ) (2024-09-30T12:36:25Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
本稿では,この脆弱性をアライメントプロセス中に不特定性に対処する新たな視点を提案する。
本稿では,報酬の相違の程度を定量化し,その有効性を実証する指標ReGapを紹介する。
ReMissは、報酬ミスの空間で敵のプロンプトを生成する自動レッドチームリングシステムである。
論文 参考訳(メタデータ) (2024-06-20T15:12:27Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification [8.733354577147093]
本稿では,Large Language Models(LLM)とFormal Verification戦略を組み合わせたソフトウェア脆弱性の自動修復手法を提案する。
我々は、ESBMC-AIフレームワークを概念実証として、よく認識され、業界に受け入れられたSMTベースのコンテキスト境界モデルチェッカー(ESBMC)と事前訓練されたトランスフォーマーモデルを活用する。
本研究は,バッファオーバーフローや演算オーバーフロー,ポインタ参照障害などの問題を高精度に検出および修正するESBMC-AIの機能を示すものである。
論文 参考訳(メタデータ) (2023-05-24T05:54:10Z) - RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers
via Randomized Deletion [23.309600117618025]
離散列分類器のランダム化スムーシングを適用して、編集距離境界の敵に対して確固たるロバスト性を提供する。
私たちの証明は、確立されたNeyman-Pearsonアプローチから逸脱したものです。
一般的なMalConvマルウェア検出モデルに適用すると、スムーシング機構RS-Delは128バイトの編集距離半径で91%の精度を達成できる。
論文 参考訳(メタデータ) (2023-01-31T01:40:26Z) - Autoencoding Variational Autoencoder [56.05008520271406]
我々は,この行動が学習表現に与える影響と,自己整合性の概念を導入することでそれを修正する結果について検討する。
自己整合性アプローチで訓練されたエンコーダは、敵攻撃による入力の摂動に対して頑健な(無神経な)表現につながることを示す。
論文 参考訳(メタデータ) (2020-12-07T14:16:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。