論文の概要: Weak-to-Strong Generalization with Failure Trajectories: A Tree-based Approach to Elicit Optimal Policy in Strong Models
- arxiv url: http://arxiv.org/abs/2507.18858v1
- Date: Fri, 25 Jul 2025 00:17:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.782607
- Title: Weak-to-Strong Generalization with Failure Trajectories: A Tree-based Approach to Elicit Optimal Policy in Strong Models
- Title(参考訳): 故障軌道を用いた弱-ストロング一般化:強モデルにおける最適解法への木に基づくアプローチ
- Authors: Ruimeng Ye, Zihan Wang, Xiao Yang, Zinan Ling, Manling Li, Bo Hui,
- Abstract要約: 我々は、弱いモデルによって生成された中間作用の軌跡を持つ強いモデルを微調整する。
人間の学習プロセスに動機づけられた我々は、成功知識だけでなく失敗経験も一般化することを提案する。
我々の経験的評価は、多種多様なタスク領域にわたる推論と意思決定能力を大幅に改善したことを示す。
- 参考スコア(独自算出の注目度): 25.802907498281687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weak-to-Strong generalization (W2SG) is a new trend to elicit the full capabilities of a strong model with supervision from a weak model. While existing W2SG studies focus on simple tasks like binary classification, we extend this paradigm to complex interactive decision-making environments. Specifically, we fine-tune a strong model with trajectories of intermediate actions generated by a weak model. Motivated by the human learning process, we propose to generalize not only success knowledge but also failure experience so that the strong model can learn from failed trajectories accumulated by weak models. To effectively and efficiently elicit the potential of strong agents, we further construct ``trajectory trees," a hierarchical representation that organizes weak model-generated action trajectories, coupled with Monte Carlo Tree Search (MCTS) to optimize the strong model. Through theoretical analysis, we provide formal guarantees for the effectiveness of our method in improving W2SG performance. Our empirical evaluations demonstrate substantial improvements in reasoning and decision-making capabilities across diverse task domains, validating the scalability and robustness of our proposed framework. Our code is available at: https://github.com/yeruimeng/TraTree
- Abstract(参考訳): W2SG(Wak-to-Strong generalization)は、弱いモデルから監督された強いモデルの完全な能力を引き出す新しい傾向である。
既存のW2SG研究はバイナリ分類のような単純なタスクに重点を置いているが、我々はこのパラダイムを複雑な対話型意思決定環境にまで拡張する。
具体的には、弱いモデルによって生成された中間作用の軌跡を持つ強いモデルを微調整する。
人間の学習プロセスに動機づけられた本研究では、成功知識だけでなく失敗経験も一般化し、弱いモデルによって蓄積された失敗した軌道から強力なモデルを学習できるようにすることを提案する。
さらに, モンテカルロ木探索(MCTS)と組み合わせて, モデル生成の弱い行動軌跡を整理する階層的表現である「トラジェクトリツリー」を構築し, 強エージェントのポテンシャルを効果的に抽出する。
理論的解析により,W2SGの性能向上における提案手法の有効性を正式に保証する。
我々の経験的評価は、様々なタスク領域にわたる推論と意思決定能力を大幅に改善し、提案したフレームワークのスケーラビリティと堅牢性を検証した。
私たちのコードは、https://github.com/yeruimeng/TraTree.comで利用可能です。
関連論文リスト
- Relating Misfit to Gain in Weak-to-Strong Generalization Beyond the Squared Loss [4.4505368723466585]
強クラスにおける$k$強モデルの凸結合に対する弱強一般化について検討する。
同様の不適合性に基づく性能向上のキャラクタリゼーションが得られ、$k$が大きくなると消滅する追加のエラー項が現れる。
論文 参考訳(メタデータ) (2025-01-31T12:57:58Z) - Debate Helps Weak-to-Strong Generalization [68.70065254564642]
我々は,強い事前訓練モデルを用いて人間の監督を改善する方法について検討し,弱い人間の監督を増強した強いモデルを監督する。
議論は、信頼できない強力なモデルから信頼できる情報を抽出する弱いモデルを支援することができる。
OpenAIの弱いNLPベンチマークの実験では、組み合わせアプローチがアライメントを改善することが示されている。
論文 参考訳(メタデータ) (2025-01-21T05:36:13Z) - Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
本稿では,大規模言語モデル間の類似性や関連性の程度であるモデル親和性を紹介する。
モデル統合後の性能向上とモデル親和性の間には,一定の関係があることが判明した。
我々は新しいモデルマージ戦略を提案する。Top-k Greedy Merging with Model Kinship。
論文 参考訳(メタデータ) (2024-10-16T14:29:29Z) - Super(ficial)-alignment: Strong Models May Deceive Weak Models in Weak-to-Strong Generalization [68.62228569439478]
弱い着想の問題が存在するかどうかを考察する。
弱いモデルと強いモデルの間の能力ギャップが増大するにつれて、偽造は増大する。
私たちの研究は、スーパーアライメントの真の信頼性にもっと注意を払う必要があることを強調します。
論文 参考訳(メタデータ) (2024-06-17T11:36:39Z) - Robust Model-Based Reinforcement Learning with an Adversarial Auxiliary Model [2.9109581496560044]
特定のマルコフ決定過程(MDP)で訓練するRLエージェントは、ほぼ同一のMDPでよく機能するのにしばしば苦労する。
我々は,ロバストMDPの枠組みをモデルベース設定に適用し,新しい学習遷移モデルを導入する。
実験結果から,高次元MuJoCo制御タスクにおけるポリシーロバスト性の顕著な改善が示唆された。
論文 参考訳(メタデータ) (2024-06-14T12:37:08Z) - Bayesian WeakS-to-Strong from Text Classification to Generation [14.897191979004782]
この研究は、人間の意見の多様性をシミュレートする弱いモデルのアンサンブルを探索することで、Weak-to-StrongからWeakS-to-Strongに拡張する。
信頼性スコアは、WeakS-to-Strong一般化を導くベイズ的アプローチを用いて推定される。
その結果,提案手法の有効性を学生モデルの信頼性に示し,スーパーアライメントの可能性を示した。
論文 参考訳(メタデータ) (2024-05-24T13:33:11Z) - Jointly Training and Pruning CNNs via Learnable Agent Guidance and Alignment [69.33930972652594]
本稿では,CNNモデルの重みと構造的プーン構造を協調的に学習するための新しい構造的プルーニング手法を提案する。
本手法の中核となる要素は強化学習(RL)エージェントであり,その動作がCNNモデルの階層のプルーニング比を決定する。
我々は,モデルの重みとエージェントのポリシーを反復的に訓練し,共同訓練と刈り取りを行う。
論文 参考訳(メタデータ) (2024-03-28T15:22:29Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
モデルに基づく強化学習における一般的な実践は、エージェントの環境のあらゆる側面をモデル化するモデルを学ぶことである。
このようなモデルは、生涯にわたる強化学習シナリオにおいて、スケーラブルで堅牢な計画を実行するのに特に適していない、と我々は主張する。
我々は,「最小値部分モデル」と呼ぶ,環境の関連する側面のみをモデル化する新しい種類のモデルを提案する。
論文 参考訳(メタデータ) (2023-01-24T16:40:01Z) - Causal Dynamics Learning for Task-Independent State Abstraction [61.707048209272884]
タスク独立状態抽象化(CDL)のための因果ダイナミクス学習を導入する。
CDLは、状態変数とアクションの間の不要な依存関係を取り除く理論的に証明された因果ダイナミクスモデルを学ぶ。
状態抽象化は、学習されたダイナミクスから導き出すことができる。
論文 参考訳(メタデータ) (2022-06-27T17:02:53Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) は、ディープニューラルネットワークの堅牢性を高める効果的なアプローチである。
我々は、Contrastive Energy-based Models(CEM)と呼ばれる統合確率的枠組みを開発することにより、この現象をデミステレーションする。
本稿では,逆学習法とサンプリング法を開発するための原則的手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T05:33:34Z) - Model-Invariant State Abstractions for Model-Based Reinforcement
Learning [54.616645151708994]
textitmodel-invarianceという新しいタイプの状態抽象化を紹介します。
これにより、状態変数の見当たらない値の新しい組み合わせへの一般化が可能になる。
このモデル不変状態抽象化を通じて最適なポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2021-02-19T10:37:54Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
グラフ構造化サーロゲートモデル (GSSM) と呼ばれるモデルが, 環境ダイナミクス予測における最先端の手法を上回っていることを示した。
当社のアプローチでは,テスト時間ポリシの勾配最適化を回避して,デプロイメント中の高速実行を実現しつつ,高いリターンを得ることができる。
論文 参考訳(メタデータ) (2021-02-16T17:21:55Z) - Bridging Imagination and Reality for Model-Based Deep Reinforcement
Learning [72.18725551199842]
BrIdging Reality and Dream (BIRD) と呼ばれる新しいモデルに基づく強化学習アルゴリズムを提案する。
虚構と実軌跡の相互情報を最大化し、虚構から学んだ政策改善を実軌跡に容易に一般化できるようにする。
提案手法は, モデルベース計画のサンプル効率を向上し, 挑戦的なビジュアル制御ベンチマークの最先端性能を実現する。
論文 参考訳(メタデータ) (2020-10-23T03:22:01Z) - On the model-based stochastic value gradient for continuous
reinforcement learning [50.085645237597056]
モデルベースエージェントは,サンプル効率と最終報酬の両方の観点から,最先端のモデルフリーエージェントより優れていることを示す。
以上の結果から,モデルに基づく政策評価がより注目に値することが示唆された。
論文 参考訳(メタデータ) (2020-08-28T17:58:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。