Gaussian Set Surface Reconstruction through Per-Gaussian Optimization
- URL: http://arxiv.org/abs/2507.18923v1
- Date: Fri, 25 Jul 2025 03:31:47 GMT
- Title: Gaussian Set Surface Reconstruction through Per-Gaussian Optimization
- Authors: Zhentao Huang, Di Wu, Zhenbang He, Minglun Gong,
- Abstract summary: 3D Gaussian Splatting (3DGS) effectively synthesizes novel views through its flexible representation, yet fails to accurately reconstruct scene geometry.<n>We propose Gaussian Set Surface Reconstruction (GSSR), a method designed to distribute Gaussians evenly along the latent surface while aligning their dominant normals with the surface normal.<n>GSSR enforces fine-grained geometric alignment through a combination of pixel-level and Gaussian-level single-view normal consistency and multi-view photometric consistency.
- Score: 9.451254271017767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) effectively synthesizes novel views through its flexible representation, yet fails to accurately reconstruct scene geometry. While modern variants like PGSR introduce additional losses to ensure proper depth and normal maps through Gaussian fusion, they still neglect individual placement optimization. This results in unevenly distributed Gaussians that deviate from the latent surface, complicating both reconstruction refinement and scene editing. Motivated by pioneering work on Point Set Surfaces, we propose Gaussian Set Surface Reconstruction (GSSR), a method designed to distribute Gaussians evenly along the latent surface while aligning their dominant normals with the surface normal. GSSR enforces fine-grained geometric alignment through a combination of pixel-level and Gaussian-level single-view normal consistency and multi-view photometric consistency, optimizing both local and global perspectives. To further refine the representation, we introduce an opacity regularization loss to eliminate redundant Gaussians and apply periodic depth- and normal-guided Gaussian reinitialization for a cleaner, more uniform spatial distribution. Our reconstruction results demonstrate significantly improved geometric precision in Gaussian placement, enabling intuitive scene editing and efficient generation of novel Gaussian-based 3D environments. Extensive experiments validate GSSR's effectiveness, showing enhanced geometric accuracy while preserving high-quality rendering performance.
Related papers
- GDGS: 3D Gaussian Splatting Via Geometry-Guided Initialization And Dynamic Density Control [6.91367883100748]
Gaussian Splatting is an alternative for rendering realistic images while supporting real-time performance.<n>We propose a method to enhance 3D Gaussian Splatting (3DGS)citeKerbl2023, addressing challenges in initialization, optimization, and density control.<n>Our method demonstrates comparable or superior results to state-of-the-art methods, rendering high-fidelity images in real time.
arXiv Detail & Related papers (2025-07-01T01:29:31Z) - PG-SAG: Parallel Gaussian Splatting for Fine-Grained Large-Scale Urban Buildings Reconstruction via Semantic-Aware Grouping [6.160345720038265]
We introduce a parallel Gaussian splatting method, termed PG-SAG, which fully exploits semantic cues for both partitioning and kernel optimization.<n>Experiments are tested on various urban datasets, the results demonstrated the superior performance of our PG-SAG on building surface reconstruction.
arXiv Detail & Related papers (2025-01-03T07:40:16Z) - SolidGS: Consolidating Gaussian Surfel Splatting for Sparse-View Surface Reconstruction [48.228533595941556]
We propose a novel method called SolidGS to address this problem.<n>We observed that the reconstructed geometry can be severely inconsistent across multi-views.<n>With the additional help of geometrical regularization and monocular normal estimation, our method achieves superior performance on the sparse view surface reconstruction.
arXiv Detail & Related papers (2024-12-19T21:04:43Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
We introduce MonoGSDF, a novel method that couples primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction.<n>To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization.<n>Experiments on real-world datasets outperforms prior methods while maintaining efficiency.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
We present DeSiRe-GS, a self-supervised gaussian splatting representation.
It enables effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios.
arXiv Detail & Related papers (2024-11-18T05:49:16Z) - PixelGaussian: Generalizable 3D Gaussian Reconstruction from Arbitrary Views [116.10577967146762]
PixelGaussian is an efficient framework for learning generalizable 3D Gaussian reconstruction from arbitrary views.
Our method achieves state-of-the-art performance with good generalization to various numbers of views.
arXiv Detail & Related papers (2024-10-24T17:59:58Z) - PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
We propose a fast planar-based Gaussian splatting reconstruction representation (PGSR) to achieve high-fidelity surface reconstruction.<n>We then introduce single-view geometric, multi-view photometric, and geometric regularization to preserve global geometric accuracy.<n>Our method achieves fast training and rendering while maintaining high-fidelity rendering and geometric reconstruction, outperforming 3DGS-based and NeRF-based methods.
arXiv Detail & Related papers (2024-06-10T17:59:01Z) - VCR-GauS: View Consistent Depth-Normal Regularizer for Gaussian Surface Reconstruction [47.603017811399624]
We propose a Depth-Normal regularizer that directly couples normal with other geometric parameters, leading to full updates of the geometric parameters from normal regularization.
We also introduce a densification and splitting strategy to regularize the size and distribution of 3D Gaussians for more accurate surface modeling.
arXiv Detail & Related papers (2024-06-09T13:15:43Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF) is a novel approach for efficient, high-quality, and adaptive surface reconstruction in scenes.
GOF is derived from ray-tracing-based volume rendering of 3D Gaussians.
GOF surpasses existing 3DGS-based methods in surface reconstruction and novel view synthesis.
arXiv Detail & Related papers (2024-04-16T17:57:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.