TreeReader: A Hierarchical Academic Paper Reader Powered by Language Models
- URL: http://arxiv.org/abs/2507.18945v1
- Date: Fri, 25 Jul 2025 04:31:09 GMT
- Title: TreeReader: A Hierarchical Academic Paper Reader Powered by Language Models
- Authors: Zijian Zhang, Pan Chen, Fangshi Du, Runlong Ye, Oliver Huang, Michael Liut, Alán Aspuru-Guzik,
- Abstract summary: TreeReader is a novel language model-augmented paper reader.<n>It decomposes papers into an interactive tree structure where each section is represented by a concise summary.<n>TreeReader provides a more focused and efficient way to navigate and understand complex academic literature.
- Score: 4.051630462399835
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Efficiently navigating and understanding academic papers is crucial for scientific progress. Traditional linear formats like PDF and HTML can cause cognitive overload and obscure a paper's hierarchical structure, making it difficult to locate key information. While LLM-based chatbots offer summarization, they often lack nuanced understanding of specific sections, may produce unreliable information, and typically discard the document's navigational structure. Drawing insights from a formative study on academic reading practices, we introduce TreeReader, a novel language model-augmented paper reader. TreeReader decomposes papers into an interactive tree structure where each section is initially represented by an LLM-generated concise summary, with underlying details accessible on demand. This design allows users to quickly grasp core ideas, selectively explore sections of interest, and verify summaries against the source text. A user study was conducted to evaluate TreeReader's impact on reading efficiency and comprehension. TreeReader provides a more focused and efficient way to navigate and understand complex academic literature by bridging hierarchical summarization with interactive exploration.
Related papers
- Accelerating Scientific Discovery with Multi-Document Summarization of Impact-Ranked Papers [0.4334105740533729]
We introduce a summarization feature to BIP! Finder, a scholarly search engine that ranks literature based on distinct impact aspects like popularity and influence.<n>Our approach enables users to generate two types of summaries from top-ranked search results: a concise summary for an instantaneous at-a-glance comprehension and a more comprehensive literature review-style summary for greater, better-organized comprehension.
arXiv Detail & Related papers (2025-08-05T22:56:09Z) - Structured Attention Matters to Multimodal LLMs in Document Understanding [52.37530640460363]
We investigate how input format influences document comprehension performance.<n>We discover that raw OCR text often impairs rather than improves MLLMs' performance.<n>We propose a novel structure-preserving approach that encodes document elements using the LaTex paradigm.
arXiv Detail & Related papers (2025-06-19T07:16:18Z) - DISRetrieval: Harnessing Discourse Structure for Long Document Retrieval [51.89673002051528]
DISRetrieval is a novel hierarchical retrieval framework that leverages linguistic discourse structure to enhance long document understanding.<n>Our studies confirm that discourse structure significantly enhances retrieval effectiveness across different document lengths and query types.
arXiv Detail & Related papers (2025-05-26T14:45:12Z) - ReTreever: Tree-based Coarse-to-Fine Representations for Retrieval [64.44265315244579]
We propose a tree-based method for organizing and representing reference documents at various granular levels.<n>Our method, called ReTreever, jointly learns a routing function per internal node of a binary tree such that query and reference documents are assigned to similar tree branches.<n>Our evaluations show that ReTreever generally preserves full representation accuracy.
arXiv Detail & Related papers (2025-02-11T21:35:13Z) - RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval [26.527911244587134]
We introduce the novel approach of embedding, clustering, and summarizing chunks of text, constructing a tree with differing levels of summarization from the bottom up.
At inference time, our RAPTOR model retrieves from this tree, integrating information across lengthy documents at different levels of abstraction.
arXiv Detail & Related papers (2024-01-31T18:30:21Z) - Walking Down the Memory Maze: Beyond Context Limit through Interactive
Reading [63.93888816206071]
We introduce MemWalker, a method that processes the long context into a tree of summary nodes. Upon receiving a query, the model navigates this tree in search of relevant information, and responds once it gathers sufficient information.
We show that, beyond effective reading, MemWalker enhances explainability by highlighting the reasoning steps as it interactively reads the text; pinpointing the relevant text segments related to the query.
arXiv Detail & Related papers (2023-10-08T06:18:14Z) - DiscoverPath: A Knowledge Refinement and Retrieval System for
Interdisciplinarity on Biomedical Research [96.10765714077208]
Traditional keyword-based search engines fall short in assisting users who may not be familiar with specific terminologies.
We present a knowledge graph-based paper search engine for biomedical research to enhance the user experience.
The system, dubbed DiscoverPath, employs Named Entity Recognition (NER) and part-of-speech (POS) tagging to extract terminologies and relationships from article abstracts to create a KG.
arXiv Detail & Related papers (2023-09-04T20:52:33Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z) - OPAD: An Optimized Policy-based Active Learning Framework for Document
Content Analysis [6.159771892460152]
We propose textitOPAD, a novel framework using reinforcement policy for active learning in content detection tasks for documents.
The framework learns the acquisition function to decide the samples to be selected while optimizing performance metrics.
We show superior performance of the proposed textitOPAD framework for active learning for various tasks related to document understanding.
arXiv Detail & Related papers (2021-10-01T07:40:56Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
We propose a Hierarchical bi-directional self-attention Network framework (HabNet) for paper review rating prediction and recommendation.
Specifically, we leverage the hierarchical structure of the paper reviews with three levels of encoders: sentence encoder (level one), intra-review encoder (level two) and inter-review encoder (level three)
We are able to identify useful predictors to make the final acceptance decision, as well as to help discover the inconsistency between numerical review ratings and text sentiment conveyed by reviewers.
arXiv Detail & Related papers (2020-11-02T08:07:50Z) - Selective Attention Encoders by Syntactic Graph Convolutional Networks
for Document Summarization [21.351111598564987]
We propose a graph to connect the parsing trees from the sentences in a document and utilize the stacked graph convolutional networks (GCNs) to learn the syntactic representation for a document.
The proposed GCNs based selective attention approach outperforms the baselines and achieves the state-of-the-art performance on the dataset.
arXiv Detail & Related papers (2020-03-18T01:30:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.