論文の概要: Educational Personalized Learning Path Planning with Large Language Models
- arxiv url: http://arxiv.org/abs/2407.11773v1
- Date: Tue, 16 Jul 2024 14:32:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 14:32:53.103068
- Title: Educational Personalized Learning Path Planning with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた教育用パーソナライズドラーニングパス計画
- Authors: Chee Ng, Yuen Fung,
- Abstract要約: 本稿では,これらの課題に対処するために,大規模言語モデル(LLM)と迅速なエンジニアリングを統合する新しいアプローチを提案する。
学習者固有の情報を組み込んだプロンプトを設計することにより,LLama-2-70B や GPT-4 などの LLM をガイドし,パーソナライズ,一貫性,教育的な学習経路を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Educational Personalized Learning Path Planning (PLPP) aims to tailor learning experiences to individual learners' needs, enhancing learning efficiency and engagement. Despite its potential, traditional PLPP systems often lack adaptability, interactivity, and transparency. This paper proposes a novel approach integrating Large Language Models (LLMs) with prompt engineering to address these challenges. By designing prompts that incorporate learner-specific information, our method guides LLMs like LLama-2-70B and GPT-4 to generate personalized, coherent, and pedagogically sound learning paths. We conducted experiments comparing our method with a baseline approach across various metrics, including accuracy, user satisfaction, and the quality of learning paths. The results show significant improvements in all areas, particularly with GPT-4, demonstrating the effectiveness of prompt engineering in enhancing PLPP. Additional long-term impact analysis further validates our method's potential to improve learner performance and retention. This research highlights the promise of LLMs and prompt engineering in advancing personalized education.
- Abstract(参考訳): 教育的パーソナライズド・ラーニング・パス・プランニング(PLPP)は、学習経験を学習者のニーズに合わせて調整し、学習効率とエンゲージメントを高めることを目的としている。
その可能性にもかかわらず、従来のPLPPシステムは適応性、相互作用性、透明性に欠けることが多い。
本稿では,これらの課題に対処するために,大規模言語モデル(LLM)と迅速なエンジニアリングを統合する新しいアプローチを提案する。
学習者固有の情報を組み込んだプロンプトを設計することにより,LLama-2-70B や GPT-4 などの LLM をガイドし,パーソナライズ,一貫性,教育的な学習経路を生成する。
提案手法を,精度,ユーザ満足度,学習経路の質など,様々な指標にまたがるベースラインアプローチと比較実験を行った。
その結果,特にGPT-4では,PLPPの強化に即興的な工学的効果が示され,全領域において顕著な改善が見られた。
さらなる長期的影響分析は、学習者のパフォーマンスと保持性を改善するための方法の可能性をさらに検証する。
この研究は、パーソナライズされた教育の推進におけるLLMの約束とエンジニアリングの促進を強調している。
関連論文リスト
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Enhancing Computer Programming Education with LLMs: A Study on Effective Prompt Engineering for Python Code Generation [6.267144136593821]
大規模言語モデル(LLM)とプロンプトエンジニアリングは、パーソナライズされた教育を通じてコンピュータプログラミング教育を前進させる大きな可能性を秘めている。
本稿では, 多様な教育ニーズに合わせた迅速な技術戦略の体系的分類, LLMの本来の能力を超えた複雑な問題を解決する能力の強化, これらの戦略の評価と実装のための堅牢な枠組みの確立, の3つの重要な研究課題について考察する。
GPT-4o, GPT-4o, Llama3-8b, Mixtral-8x7b を用いたLeetCode や USACO などのデータセットによる実験により, GPT-4o は特に "multi-step" で他より一貫して優れていることが明らかになった。
論文 参考訳(メタデータ) (2024-07-07T16:41:07Z) - SPL: A Socratic Playground for Learning Powered by Large Language Model [5.383689446227398]
ソクラティック・プレイグラウンド・フォー・ラーニング (SPL) は GPT-4 をベースとした対話型プレイグラウンドである。
SPLは、個人のニーズに合わせてパーソナライズされた適応的な学習体験を強化することを目的としている。
論文 参考訳(メタデータ) (2024-06-20T01:18:52Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
各視点の技術的進歩を体系的にレビューし、関連するデータセットとベンチマークを整理し、教育におけるLSMの展開に伴うリスクと課題を特定する。
本調査は、LLMの力を利用して教育実践を変革し、より効果的なパーソナライズされた学習環境を育むための、教育者、研究者、政策立案者のための総合的な技術図を提供することを目的とする。
論文 参考訳(メタデータ) (2024-03-26T21:04:29Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - Prototyping the use of Large Language Models (LLMs) for adult learning
content creation at scale [0.6628807224384127]
本稿では,Large Language Models (LLM) の非同期コース生成における利用について検討する。
LLMを利用したコースプロトタイプを開発し,ロバストなHuman-in-the-loopプロセスを実装した。
最初の発見は、このアプローチを採用することで、正確さや明快さを損なうことなく、コンテンツ作成を高速化できることを示している。
論文 参考訳(メタデータ) (2023-06-02T10:58:05Z) - Scaling Evidence-based Instructional Design Expertise through Large
Language Models [0.0]
本稿では,大規模言語モデル(LLM),特にGPT-4を教育設計の分野で活用することを検討する。
本研究は,エビデンスに基づく教育設計の専門知識のスケールアップに着目し,理論教育学と実践実践のギャップを埋めることを目的としている。
我々は,AIによるコンテンツ生成のメリットと限界について論じ,教育資料の品質確保に人的監督が必要であることを強調した。
論文 参考訳(メタデータ) (2023-05-31T17:54:07Z) - Towards Building the Federated GPT: Federated Instruction Tuning [66.7900343035733]
本稿では,大規模言語モデル(LLM)の命令チューニングのための学習フレームワークとして,FedIT(Federated Instruction Tuning)を紹介する。
我々は,FedITを用いてクライアントの終端における多種多様な命令セットを活用することにより,ローカル命令のみを限定した集中学習に比べ,LLMの性能を向上させることを実証した。
論文 参考訳(メタデータ) (2023-05-09T17:42:34Z) - Adaptive Learning Path Navigation Based on Knowledge Tracing and
Reinforcement Learning [2.0263791972068628]
本稿では,適応学習経路ナビゲーション(ALPN)システムについて紹介する。
ALPNシステムは、学生のニーズに合わせて学習経路を調整し、学習効率を大幅に向上させる。
実験結果から、ALPNシステムは、学習結果の最大化において、従来の研究よりも8.2%優れていたことが示されている。
論文 参考訳(メタデータ) (2023-05-08T05:54:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。