論文の概要: MindSpeed RL: Distributed Dataflow for Scalable and Efficient RL Training on Ascend NPU Cluster
- arxiv url: http://arxiv.org/abs/2507.19017v1
- Date: Fri, 25 Jul 2025 07:11:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.857038
- Title: MindSpeed RL: Distributed Dataflow for Scalable and Efficient RL Training on Ascend NPU Cluster
- Title(参考訳): MindSpeed RL: Ascend NPUクラスタによるスケーラブルで効率的なRLトレーニングのための分散データフロー
- Authors: Laingjun Feng, Chenyi Pan, Xinjie Guo, Fei Mei, Benzhe Ning, Jianxiang Zhang, Xinyang Liu, Beirong Zhou, Zeng Shu, Chang Liu, Guang Yang, Zhenyu Han, Jiangben Wang, Bo Wang,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、大規模言語モデルの整合化にますます用いられるパラダイムである。
本稿では,大規模RL学習のための効果的かつ効率的なシステムであるMindSpeed RLを紹介する。
- 参考スコア(独自算出の注目度): 6.589537564035392
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) is a paradigm increasingly used to align large language models. Popular RL algorithms utilize multiple workers and can be modeled as a graph, where each node is the status of a worker and each edge represents dataflow between nodes. Owing to the heavy cross-node dependencies, the RL training system usually suffers from poor cluster scalability and low memory utilization. In this article, we introduce MindSpeed RL, an effective and efficient system for large-scale RL training. Unlike existing centralized methods, MindSpeed RL organizes the essential data dependencies in RL training, i.e., sample flow and resharding flow, from a distributed view. On the one hand, a distributed transfer dock strategy, which sets controllers and warehouses on the basis of the conventional replay buffer, is designed to release the dispatch overhead in the sample flow. A practical allgather--swap strategy is presented to eliminate redundant memory usage in resharding flow. In addition, MindSpeed RL further integrates numerous parallelization strategies and acceleration techniques for systematic optimization. Compared with existing state-of-the-art systems, comprehensive experiments on the RL training of popular Qwen2.5-Dense-7B/32B, Qwen3-MoE-30B, and DeepSeek-R1-MoE-671B show that MindSpeed RL increases the throughput by 1.42 ~ 3.97 times. Finally, we open--source MindSpeed RL and perform all the experiments on a super pod of Ascend with 384 neural processing units (NPUs) to demonstrate the powerful performance and reliability of Ascend.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)は、大規模言語モデルの整合化にますます用いられるパラダイムである。
一般的なRLアルゴリズムは複数のワーカーを利用し、各ノードがワーカの状態であり、各エッジがノード間のデータフローを表すグラフとしてモデル化することができる。
重いノード間の依存関係のため、RLトレーニングシステムは通常、クラスタのスケーラビリティの低下とメモリ利用の低さに悩まされる。
本稿では,大規模RL学習のための効果的かつ効率的なシステムであるMindSpeed RLを紹介する。
既存の集中型手法とは異なり、MindSpeed RLは分散ビューからサンプルフローとリシャーディングフローという、RLトレーニングにおける必須データ依存関係を整理する。
一方、従来のリプレイバッファに基づいてコントローラと倉庫を設定する分散転送ドック戦略は、サンプルフローのディスパッチオーバーヘッドを解放するように設計されている。
再シャーディングフローにおける冗長なメモリ使用量を排除するために、実用的なオールガザー-スワップ戦略が提示される。
さらに、MindSpeed RLは、多くの並列化戦略とアクセラレーション技術を統合して、体系的な最適化を行う。
既存の最先端システムと比較して、一般的なQwen2.5-Dense-7B/32B、Qwen3-MoE-30B、DeepSeek-R1-MoE-671BのRLトレーニングに関する総合的な実験は、MindSpeed RLのスループットが1.42倍から3.97倍に向上したことを示している。
最後に、MindSpeed RLをオープンソース化し、384のニューラルプロセッシングユニット(NPU)を備えたAscendのスーパーポッド上で全ての実験を行い、Ascendの強力な性能と信頼性を実証する。
関連論文リスト
- Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle [53.239242017802056]
強化学習(Reinforcement Learning, RL)は、マルチモーダル大言語モデル(MLLM)の推論能力を高めるための効果的なポストトレーニングパラダイムとして登場した。
しかしながら、現在のRLパイプラインは、アドバンテージ・コラプシング(Advantage Collapsing)とロールアウト・サイレンシング(Rollout Silencing)という2つの未解決の問題によって、トレーニングの非効率に悩まされることが多い。
軌道サンプリングとバッチ合成を動的に再構成することにより、RLの微調整効率を向上する、シンプルだが原則化されたフレームワークであるShuffle-R1を提案する。
論文 参考訳(メタデータ) (2025-08-07T17:53:47Z) - Echo: Decoupling Inference and Training for Large-Scale RL Alignment on Heterogeneous Swarms [4.127488674019288]
大規模言語モデルのポストトレーニングは、同じGPUクラスタ上でトラジェクトリサンプリングとポリシ最適化を併用する。
ヘテロジニアスな"推論"と"トレーニング"スワムにまたがって、これらの2つのフェーズをきれいに分離するRLシステムであるEchoを紹介します。
論文 参考訳(メタデータ) (2025-08-07T13:37:04Z) - LlamaRL: A Distributed Asynchronous Reinforcement Learning Framework for Efficient Large-scale LLM Training [32.575669924032276]
強化学習(RL)は、大規模言語モデル(LLM)の能力向上のための訓練後の最も効果的なアプローチとなっている。
本稿では,LlamaRLについて述べる。LlamaRLは大規模LLMの効率的なトレーニングに最適化された,完全に分散された非同期RLフレームワークである。
論文 参考訳(メタデータ) (2025-05-29T22:14:15Z) - StreamRL: Scalable, Heterogeneous, and Elastic RL for LLMs with Disaggregated Stream Generation [55.75008325187133]
強化学習(RL)は,大規模言語モデル(LLM)の学習後のコアとなる。
StreamRLは、最初の原則から分離して、2種類のパフォーマンスボトルネックに対処するように設計されている。
実験により、StreamRLは既存の最先端システムと比較してスループットを最大2.66倍改善することが示された。
論文 参考訳(メタデータ) (2025-04-22T14:19:06Z) - Trajectory Balance with Asynchrony: Decoupling Exploration and Learning for Fast, Scalable LLM Post-Training [71.16258800411696]
強化学習(Reinforcement Learning, RL)は、大規模言語モデル(LLM)のポストトレーニングにおいて重要な要素である。
ポストトレーニングに使われている既存のオンラインアルゴリズムは、経験的リプレイバッファの使用と本質的に相容れない。
本稿では,TBA(Trajectory Balance with Asynchrony)によるバッファの再生を効率よく行うことを提案する。
論文 参考訳(メタデータ) (2025-03-24T17:51:39Z) - SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
本稿では,RLトレーニングアプリケーションを汎用フレームワークに統合する,RLトレーニングのデータフローに関する新しい抽象化を提案する。
スケーラブルで効率的で分散的なRLシステムであるReaLly scalableRLを開発した。
SRLは15k以上のCPUコアでRL実験を大規模に実施した初めての学術コミュニティである。
論文 参考訳(メタデータ) (2023-06-29T05:16:25Z) - MSRL: Distributed Reinforcement Learning with Dataflow Fragments [16.867322708270116]
強化学習(RL)は多くのエージェントを訓練するが、リソース集約であり、大規模なGPUクラスタにスケールする必要がある。
我々は,分散RL学習システムであるMindSpore Reinforcement Learning (MSRL)について述べる。
MSRLは、RLアルゴリズムのトレーニングループから並列計算フラグメントに関数をマッピングする、断片化されたデータフローグラフの新たな抽象化を導入している。
論文 参考訳(メタデータ) (2022-10-03T12:34:58Z) - Single-Shot Pruning for Offline Reinforcement Learning [47.886329599997474]
深層強化学習(Deep Reinforcement Learning, RL)は、複雑な現実世界の問題を解決するための強力なフレームワークである。
この問題に対処するひとつの方法は、必要なパラメータだけを残したニューラルネットワークをプルークすることです。
我々は,RLと単発プルーニングのギャップを埋め,オフラインRLに対する一般的なプルーニング手法を提案する。
論文 参考訳(メタデータ) (2021-12-31T18:10:02Z) - FNAS: Uncertainty-Aware Fast Neural Architecture Search [54.49650267859032]
強化学習(Reinforcement Learning, RL)に基づくニューラルアーキテクチャサーチ(NAS)は一般的に、収束性の向上を保証するが、巨大な計算資源の要求に悩まされる。
NASにおけるロールアウトプロセスとRLプロセスの収束を加速する汎用パイプラインを提案する。
Mobile Neural Architecture Search (MNAS)サーチスペースの実験では、提案するFast Neural Architecture Search (FNAS)が標準のRLベースのNASプロセスを10倍高速化することを示した。
論文 参考訳(メタデータ) (2021-05-25T06:32:52Z) - Learning to Prune Deep Neural Networks via Reinforcement Learning [64.85939668308966]
PuRLは、ニューラルネットワークのプルーニングのためのディープ強化学習ベースのアルゴリズムである。
現在の最先端の手法に匹敵する幅と精度を実現している。
論文 参考訳(メタデータ) (2020-07-09T13:06:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。