Differentiable Analog Quantum Computing for Optimization and Control
- URL: http://arxiv.org/abs/2210.15812v1
- Date: Fri, 28 Oct 2022 00:28:31 GMT
- Title: Differentiable Analog Quantum Computing for Optimization and Control
- Authors: Jiaqi Leng, Yuxiang Peng, Yi-Ling Qiao, Ming Lin, Xiaodi Wu
- Abstract summary: We formulate the first differentiable analog quantum computing framework with a specific parameterization design at the analog signal (pulse) level.
We propose a scalable approach to estimate the gradients of quantum dynamics using a forward pass with Monte Carlo sampling.
- Score: 14.736412617211538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We formulate the first differentiable analog quantum computing framework with
a specific parameterization design at the analog signal (pulse) level to better
exploit near-term quantum devices via variational methods. We further propose a
scalable approach to estimate the gradients of quantum dynamics using a forward
pass with Monte Carlo sampling, which leads to a quantum stochastic gradient
descent algorithm for scalable gradient-based training in our framework.
Applying our framework to quantum optimization and control, we observe a
significant advantage of differentiable analog quantum computing against SOTAs
based on parameterized digital quantum circuits by orders of magnitude.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Pulse-based variational quantum optimization and metalearning in superconducting circuits [3.770494165043573]
We introduce pulse-based variational quantum optimization (PBVQO) as a hardware-level framework.
We illustrate the framework by optimizing external superconducting on quantum interference devices.
The synergy between PBVQO and meta-learning provides an advantage over conventional gate-based variational algorithms.
arXiv Detail & Related papers (2024-07-17T15:05:36Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Unveiling quantum phase transitions from traps in variational quantum algorithms [0.0]
We introduce a hybrid algorithm that combines quantum optimization with classical machine learning.
We use LASSO for identifying conventional phase transitions and the Transformer model for topological transitions.
Our protocol significantly enhances efficiency and precision, opening new avenues in the integration of quantum computing and machine learning.
arXiv Detail & Related papers (2024-05-14T09:01:41Z) - Enhancing Quantum Annealing in Digital-Analog Quantum Computing [0.0]
Digital-analog quantum computing (DAQC) offers a promising approach to addressing the challenges of building a practical quantum computer.
We propose an algorithm designed to enhance the performance of quantum annealing.
This study provides an example of how processing quantum data using a quantum circuit can outperform classical data processing, which discards quantum information.
arXiv Detail & Related papers (2023-06-03T09:16:15Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
We study the problem of estimating the gradient of the function to be optimized directly from quantum measurements.
We derive a mathematically exact formula that provides an algorithm for estimating the gradient of any multi-qubit parametric quantum evolution.
Our algorithm continues to work, although with some approximations, even when all the available quantum gates are noisy.
arXiv Detail & Related papers (2020-05-20T18:24:11Z) - Approximating the quantum approximate optimization algorithm with
digital-analog interactions [0.0]
We show that the digital-analog paradigm is suited to the variational quantum approximate optimisation algorithm.
We observe regimes of single-qubit operation speed in which the considered variational algorithm provides a significant improvement over non-variational counterparts.
arXiv Detail & Related papers (2020-02-27T16:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.