Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge
- URL: http://arxiv.org/abs/2507.19165v1
- Date: Fri, 25 Jul 2025 11:12:21 GMT
- Title: Extreme Cardiac MRI Analysis under Respiratory Motion: Results of the CMRxMotion Challenge
- Authors: Kang Wang, Chen Qin, Zhang Shi, Haoran Wang, Xiwen Zhang, Chen Chen, Cheng Ouyang, Chengliang Dai, Yuanhan Mo, Chenchen Dai, Xutong Kuang, Ruizhe Li, Xin Chen, Xiuzheng Yue, Song Tian, Alejandro Mora-Rubio, Kumaradevan Punithakumar, Shizhan Gong, Qi Dou, Sina Amirrajab, Yasmina Al Khalil, Cian M. Scannell, Lexiaozi Fan, Huili Yang, Xiaowu Sun, Rob van der Geest, Tewodros Weldebirhan Arega, Fabrice Meriaudeau, Caner Özer, Amin Ranem, John Kalkhof, İlkay Öksüz, Anirban Mukhopadhyay, Abdul Qayyum, Moona Mazher, Steven A Niederer, Carles Garcia-Cabrera, Eric Arazo, Michal K. Grzeszczyk, Szymon Płotka, Wanqin Ma, Xiaomeng Li, Rongjun Ge, Yongqing Kou, Xinrong Chen, He Wang, Chengyan Wang, Wenjia Bai, Shuo Wang,
- Abstract summary: Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis.<n>The efficacy of these models is highly dependent on the availability of high-quality, artifact-free images.<n>To promote research in this domain, we organized the MICCAI CMRxMotion challenge.
- Score: 56.28872161153236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have achieved state-of-the-art performance in automated Cardiac Magnetic Resonance (CMR) analysis. However, the efficacy of these models is highly dependent on the availability of high-quality, artifact-free images. In clinical practice, CMR acquisitions are frequently degraded by respiratory motion, yet the robustness of deep learning models against such artifacts remains an underexplored problem. To promote research in this domain, we organized the MICCAI CMRxMotion challenge. We curated and publicly released a dataset of 320 CMR cine series from 40 healthy volunteers who performed specific breathing protocols to induce a controlled spectrum of motion artifacts. The challenge comprised two tasks: 1) automated image quality assessment to classify images based on motion severity, and 2) robust myocardial segmentation in the presence of motion artifacts. A total of 22 algorithms were submitted and evaluated on the two designated tasks. This paper presents a comprehensive overview of the challenge design and dataset, reports the evaluation results for the top-performing methods, and further investigates the impact of motion artifacts on five clinically relevant biomarkers. All resources and code are publicly available at: https://github.com/CMRxMotion
Related papers
- Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.<n>We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
We introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI.
We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels.
We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories.
arXiv Detail & Related papers (2024-04-26T14:25:07Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - The Extreme Cardiac MRI Analysis Challenge under Respiratory Motion
(CMRxMotion) [21.08720366527158]
The manuscript describes the design of extreme cardiac MRI analysis challenge under respiratory motion (CMRxMotion Challenge)
The challenge recruited 40 healthy volunteers to perform different breath-hold behaviors during one imaging visit.
Radiologists assessed the image quality and annotated the level of respiratory motion artifacts.
arXiv Detail & Related papers (2022-10-12T16:38:23Z) - Detecting respiratory motion artefacts for cardiovascular MRIs to ensure
high-quality segmentation [0.9790426916395246]
We present a workflow which predicts a severity score for respiratory motion in cardiovascular magnetic resonance imaging (CMR)
Our method ensures that the acquired CMR holds up to a specific quality standard before it is used for further diagnosis.
arXiv Detail & Related papers (2022-09-20T12:29:05Z) - Multi-task Swin Transformer for Motion Artifacts Classification and
Cardiac Magnetic Resonance Image Segmentation [0.4419843514606336]
We present a Multi-task Swin UNEt TRansformer network for simultaneous solving of two tasks in the CMRxMotion challenge: CMR segmentation and motion artifacts classification.
We utilize both segmentation and classification as a multi-task learning approach which allows us to determine the diagnostic quality of CMR and generate masks at the same time.
arXiv Detail & Related papers (2022-09-06T13:14:44Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
This work defines a new task of medical image analysis, i.e., to perform myocardial pathology segmentation (MyoPS)
MyoPS combines three-sequence cardiac magnetic resonance (CMR) images, which was first proposed in the MyoPS challenge, in conjunction with MICCAI 2020.
The challenge provided 45 paired and pre-aligned CMR images, allowing algorithms to combine the complementary information from the three CMR sequences for pathology segmentation.
arXiv Detail & Related papers (2022-01-10T06:37:23Z) - Assessing Lesion Segmentation Bias of Neural Networks on Motion
Corrupted Brain MRI [3.9694334747397484]
We quantify the impact that different levels of motion artifacts have on the performance of neural networks engaged in a lesion segmentation task.
Our results suggest that a network trained using curriculum learning is effective at compensating for different levels of motion artifacts.
arXiv Detail & Related papers (2020-10-12T21:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.