Continual Learning-Based Unified Model for Unpaired Image Restoration Tasks
- URL: http://arxiv.org/abs/2507.19184v1
- Date: Fri, 25 Jul 2025 11:47:40 GMT
- Title: Continual Learning-Based Unified Model for Unpaired Image Restoration Tasks
- Authors: Kotha Kartheek, Lingamaneni Gnanesh Chowdary, Snehasis Mukherjee,
- Abstract summary: For applications such as autonomous driving, a unified model is necessary to perform restoration of corrupted images due to different weather conditions.<n>We propose a continual learning approach to propose a unified framework for image restoration.<n>Experiments on standard benchmark datasets for dehazing, desnowing and deraining tasks demonstrate significant improvements in PSNR, SSIM, and perceptual quality over the state-of-the-art.
- Score: 2.7241418453016792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Restoration of images contaminated by different adverse weather conditions such as fog, snow, and rain is a challenging task due to the varying nature of the weather conditions. Most of the existing methods focus on any one particular weather conditions. However, for applications such as autonomous driving, a unified model is necessary to perform restoration of corrupted images due to different weather conditions. We propose a continual learning approach to propose a unified framework for image restoration. The proposed framework integrates three key innovations: (1) Selective Kernel Fusion layers that dynamically combine global and local features for robust adaptive feature selection; (2) Elastic Weight Consolidation (EWC) to enable continual learning and mitigate catastrophic forgetting across multiple restoration tasks; and (3) a novel Cycle-Contrastive Loss that enhances feature discrimination while preserving semantic consistency during domain translation. Further, we propose an unpaired image restoration approach to reduce the dependance of the proposed approach on the training data. Extensive experiments on standard benchmark datasets for dehazing, desnowing and deraining tasks demonstrate significant improvements in PSNR, SSIM, and perceptual quality over the state-of-the-art.
Related papers
- Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
Multiple-in-one image restoration (IR) has made significant progress, aiming to handle all types of single degraded image restoration with a single model.
In this paper, we propose a novel multiple-in-one IR model that can effectively restore images with both single and mixed degradations.
arXiv Detail & Related papers (2024-11-25T09:26:34Z) - All-in-one Weather-degraded Image Restoration via Adaptive Degradation-aware Self-prompting Model [23.940339806402882]
Existing approaches for all-in-one weather-degraded image restoration suffer from inefficiencies in leveraging degradation-aware priors.
We develop an adaptive degradation-aware self-prompting model (ADSM) for all-in-one weather-degraded image restoration.
arXiv Detail & Related papers (2024-11-12T00:07:16Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models [9.145545884814327]
We present DiffIR2VR-Zero, a zero-shot framework that enables any pre-trained image restoration model to perform high-quality video restoration without additional training.<n>Our framework works with any image restoration diffusion model, providing a versatile solution for video enhancement without task-specific training or modifications.
arXiv Detail & Related papers (2024-07-01T17:59:12Z) - Joint Conditional Diffusion Model for Image Restoration with Mixed Degradations [29.14467633167042]
We propose a new method for image restoration in adverse weather conditions.
We use a mixed degradation model based on atmosphere scattering model to guide the whole restoration process.
Experiments on both multi-weather and weather-specific datasets demonstrate the superiority of our method over state-of-the-art competing methods.
arXiv Detail & Related papers (2024-04-11T14:07:16Z) - Continual All-in-One Adverse Weather Removal with Knowledge Replay on a
Unified Network Structure [92.8834309803903]
In real-world applications, image degeneration caused by adverse weather is always complex and changes with different weather conditions from days and seasons.
We develop a novel continual learning framework with effective knowledge replay (KR) on a unified network structure.
It considers the characteristics of the image restoration task with multiple degenerations in continual learning, and the knowledge for different degenerations can be shared and accumulated.
arXiv Detail & Related papers (2024-03-12T03:50:57Z) - Cross-Consistent Deep Unfolding Network for Adaptive All-In-One Video
Restoration [78.14941737723501]
We propose a Cross-consistent Deep Unfolding Network (CDUN) for All-In-One VR.
By orchestrating two cascading procedures, CDUN achieves adaptive processing for diverse degradations.
In addition, we introduce a window-based inter-frame fusion strategy to utilize information from more adjacent frames.
arXiv Detail & Related papers (2023-09-04T14:18:00Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Restoring Vision in Adverse Weather Conditions with Patch-Based
Denoising Diffusion Models [8.122270502556374]
We present a novel patch-based image restoration algorithm based on denoising diffusion probabilistic models.
We demonstrate our approach to achieve state-of-the-art performances on both weather-specific and multi-weather image restoration.
arXiv Detail & Related papers (2022-07-29T11:52:41Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Robust Single Image Dehazing Based on Consistent and Contrast-Assisted
Reconstruction [95.5735805072852]
We propose a novel density-variational learning framework to improve the robustness of the image dehzing model.
Specifically, the dehazing network is optimized under the consistency-regularized framework.
Our method significantly surpasses the state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-29T08:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.