Resource-Efficient Hadamard Test Circuits for Nonlinear Dynamics on a Trapped-Ion Quantum Computer
- URL: http://arxiv.org/abs/2507.19250v1
- Date: Fri, 25 Jul 2025 13:16:54 GMT
- Title: Resource-Efficient Hadamard Test Circuits for Nonlinear Dynamics on a Trapped-Ion Quantum Computer
- Authors: Eleftherios Mastorakis, Muhammad Umer, Milena Guevara-Bertsch, Juris Ulmanis, Felix Rohde, Dimitris G. Angelakis,
- Abstract summary: We propose a low-depth implementation of a class of Hadamard test circuits.<n>We develop a parameterized quantum ansatz specifically tailored for variational algorithms.<n>Our findings demonstrate a significant reduction in single- and two-qubit gate counts.
- Score: 1.2063443893298391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resource-efficient, low-depth implementations of quantum circuits remain a promising strategy for achieving reliable and scalable computation on quantum hardware, as they reduce gate resources and limit the accumulation of noisy operations. Here, we propose a low-depth implementation of a class of Hadamard test circuits, complemented by the development of a parameterized quantum ansatz specifically tailored for variational algorithms that exploit the underlying Hadamard test framework. Our findings demonstrate a significant reduction in single- and two-qubit gate counts, suggesting a reliable circuit architecture for noisy intermediate-scale quantum (NISQ) devices. Building on this foundation, we tested our low-depth scheme to investigate the expressive capacity of the proposed parameterized ansatz in simulating nonlinear Burgers' dynamics. The resulting variational quantum states faithfully capture the shockwave feature of the turbulent regime and maintain high overlaps with classical benchmarks, underscoring the practical effectiveness of our framework. Furthermore, we evaluate the effect of hardware noise by modeling the error properties of real quantum processors and by executing the variational algorithm on a trapped-ion-based IBEX Q1 device. The outcomes of our demonstrations highlight the resilience of our low-depth scheme in the turbulent regime, consistently preparing high-fidelity variational states that exhibit strong agreement with classical benchmarks. Our work contributes to the advancement of resource-efficient strategies for quantum computation, offering a robust framework for tackling a range of computationally intensive problems across numerous applications.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Unitary Scrambling and Collapse: A Quantum Diffusion Framework for Generative Modeling [5.258882634977828]
We propose QSC-Diffusion, the first fully quantum diffusion-based framework for image generation.<n>We employ parameterized quantum circuits with measurement-induced collapse for reverse denoising.<n>Remarkably, QSC-Diffusion achieves competitive FID scores across multiple datasets.
arXiv Detail & Related papers (2025-06-12T11:00:21Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Circuit structure-preserving error mitigation for High-Fidelity Quantum Simulations [5.186385511113478]
We present a circuit structure-preserving error mitigation framework for parameterized quantum circuits.<n>A key advantage of our approach lies in its ability to retain the original circuit architecture while effectively characterizing and mitigating gate errors.<n>Our strategy offers a practical solution for addressing gate-induced errors and significantly broadens the scope of feasible quantum simulations on current quantum hardware.
arXiv Detail & Related papers (2025-05-22T18:00:03Z) - Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware [2.753858051267023]
This paper introduces a noise-aware distributed Quantum Approximate Optimization Algorithm (QAOA) tailored for execution on near-term quantum hardware.
We address the limitations of current Noisy Intermediate-Scale Quantum (NISQ) devices, which are hindered by limited qubit counts and high error rates.
arXiv Detail & Related papers (2024-07-24T14:50:01Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
This thesis focuses on identifying functional quantum circuits in noisy quantum hardware.
We introduce a tensor-based quantum circuit encoding, restrictions on environment dynamics to explore the search space of possible circuits efficiently.
In dealing with various VQAs, our RL-based QAS outperforms existing QAS.
arXiv Detail & Related papers (2024-02-21T12:30:39Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Gradient-free quantum optimization on NISQ devices [0.0]
We consider recent advances in weight-agnostic learning and propose a strategy that addresses the trade-off between finding appropriate circuit architectures and parameter tuning.
We investigate the use of NEAT-inspired algorithms which evaluate circuits via genetic competition and thus circumvent issues due to exceeding numbers of parameters.
arXiv Detail & Related papers (2020-12-23T10:24:54Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.