論文の概要: Knowledge Grafting: A Mechanism for Optimizing AI Model Deployment in Resource-Constrained Environments
- arxiv url: http://arxiv.org/abs/2507.19261v1
- Date: Fri, 25 Jul 2025 13:37:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 16:16:48.971987
- Title: Knowledge Grafting: A Mechanism for Optimizing AI Model Deployment in Resource-Constrained Environments
- Title(参考訳): 知識グラフト:資源制約環境におけるAIモデルのデプロイを最適化するためのメカニズム
- Authors: Osama Almurshed, Ashish Kaushal, Asmail Muftah, Nitin Auluck, Omer Rana,
- Abstract要約: 資源制約のある環境でAIモデルを最適化するために知識グラフトを導入する。
このアプローチはモデルサイズを88.54%削減する。
さまざまなエッジコンピューティングシナリオにまたがって拡張することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing adoption of Artificial Intelligence (AI) has led to larger, more complex models with numerous parameters that require substantial computing power -- resources often unavailable in many real-world application scenarios. Our paper addresses this challenge by introducing knowledge grafting, a novel mechanism that optimizes AI models for resource-constrained environments by transferring selected features (the scion) from a large donor model to a smaller rootstock model. The approach achieves an 88.54% reduction in model size (from 64.39 MB to 7.38 MB), while improving generalization capability of the model. Our new rootstock model achieves 89.97% validation accuracy (vs. donor's 87.47%), maintains lower validation loss (0.2976 vs. 0.5068), and performs exceptionally well on unseen test data with 90.45% accuracy. It addresses the typical size vs performance trade-off, and enables deployment of AI frameworks on resource-constrained devices with enhanced performance. We have tested our approach on an agricultural weed detection scenario, however, it can be extended across various edge computing scenarios, potentially accelerating AI adoption in areas with limited hardware/software support -- by mirroring in a similar manner the horticultural grafting enables productive cultivation in challenging agri-based environments.
- Abstract(参考訳): AI(Artificial Intelligence)の採用が増加し、多数のパラメータを持つ大規模で複雑なモデルが実現された。
本稿では,資源制約のある環境においてAIモデルを最適化する新しいメカニズムであるナレッジグラフトの導入により,この課題に対処する。
このアプローチはモデルサイズを88.54%削減し(64.39MBから7.38MB)、モデルの一般化能力を向上させる。
我々の新しいルートストックモデルは、89.97%の検証精度(ドナーの87.47%)を達成し、低い検証損失(0.2976 vs. 0.5068)を維持し、90.45%の精度で、目に見えないテストデータに対して極めて良好に動作する。
典型的なサイズとパフォーマンスのトレードオフに対処し、パフォーマンスを向上したリソース制約のあるデバイスにAIフレームワークをデプロイすることが可能になる。
私たちのアプローチを農業雑草検出シナリオでテストしましたが、さまざまなエッジコンピューティングシナリオにまたがって拡張することが可能で、ハードウェア/ソフトウェアサポートが限定された領域でのAI採用が加速する可能性があるのです。
関連論文リスト
- OmniEAR: Benchmarking Agent Reasoning in Embodied Tasks [52.87238755666243]
OmniEARは,言語モデルが身体的相互作用やツールの使用,マルチエージェントの協調にどう影響するかを評価するためのフレームワークである。
我々は、家庭と工業領域にまたがる1500のシナリオにおける連続的な物理的特性と複雑な空間的関係をモデル化する。
我々の体系的な評価は、モデルが制約から推論しなければならない場合、厳しい性能劣化を示す。
論文 参考訳(メタデータ) (2025-08-07T17:54:15Z) - White-Basilisk: A Hybrid Model for Code Vulnerability Detection [50.49233187721795]
我々は、優れた性能を示す脆弱性検出の新しいアプローチであるWhite-Basiliskを紹介する。
White-Basiliskは、パラメータ数2億の脆弱性検出タスクで結果を得る。
この研究は、コードセキュリティにおける新しいベンチマークを確立し、コンパクトで効率的に設計されたモデルが、特定のタスクにおいてより大きなベンチマークよりも優れているという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2025-07-11T12:39:25Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - EfficientLLaVA:Generalizable Auto-Pruning for Large Vision-language Models [64.18350535770357]
マルチモーダル推論の効率を高めるために,大規模視覚言語モデルの自動プルーニング手法を提案する。
提案手法では,所望のプルーニングポリシーを探索するために,少数のサンプルのみを活用する。
視覚的質問応答のためのScienceQA, Vizwiz, MM-vet, LLaVA-Benchデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2025-03-19T16:07:04Z) - Entropy Adaptive Decoding: Dynamic Model Switching for Efficient Inference [0.0]
本稿では,効率的な言語モデル推論のための新しいアプローチであるEntropy Adaptive Decoding (EAD)を提案する。
EADは予測の不確実性に基づいて、異なるサイズのモデル間で切り替える。
異なるモデルファミリー間で顕著な効率向上を示す。
論文 参考訳(メタデータ) (2025-02-05T22:15:21Z) - Edge-AI for Agriculture: Lightweight Vision Models for Disease Detection in Resource-Limited Settings [0.0]
提案システムは,エッジデバイスへの展開に最適化された高度なオブジェクト検出,分類,セグメンテーションモデルを統合する。
本研究は, 精度, 計算効率, 一般化能力に着目し, 各種最先端モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-12-23T06:48:50Z) - Dual-Model Distillation for Efficient Action Classification with Hybrid Edge-Cloud Solution [1.8029479474051309]
我々は、より大規模で正確なクラウドベースモデルに必要に応じて遅延しながら、より小さなモデルのローカル処理効率を活用するハイブリッドエッジクラウドソリューションを設計する。
具体的には、エッジモデルの出力が不確かである場合に予測可能な軽量スイッチャーモデルをトレーニングするための、新しい教師なしデータ生成手法であるDual-Model Distillation(DMD)を提案する。
動作分類タスクの実験結果から,我々のフレームワークは計算オーバーヘッドを少なくするだけでなく,大規模モデルのみを使用する場合と比較して精度も向上することが示された。
論文 参考訳(メタデータ) (2024-10-16T02:06:27Z) - Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
バイオメディカルイメージングにおいて広く使われているU-Netスタイルのアーキテクチャを解析する手法を開発した。
我々は,プルーニングが性能を低下させることなく,少なくとも70%圧縮できることを実証的に実証した。
論文 参考訳(メタデータ) (2024-04-12T22:05:01Z) - GISTEmbed: Guided In-sample Selection of Training Negatives for Text
Embedding Fine-tuning [0.0]
GISTEmbedは、ガイドモデルによる対照的なトレーニングにおいて、バッチ内のネガティブな選択を強化する新しい戦略である。
MTEB(Massive Text Embedding Benchmark)に対してベンチマークされたGISTEmbedは、さまざまなモデルサイズで一貫したパフォーマンス改善を示している。
論文 参考訳(メタデータ) (2024-02-26T18:55:15Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward Hacking(報酬の過度な最適化)は依然として重要な課題だ。
本稿では,報奨モデル,すなわちInfoRMのためのフレームワークを提案する。
InfoRMの過度な最適化検出機構は、有効であるだけでなく、幅広いデータセットにわたって堅牢であることを示す。
論文 参考訳(メタデータ) (2024-02-14T17:49:07Z) - Publishing Efficient On-device Models Increases Adversarial
Vulnerability [58.6975494957865]
本稿では,大規模モデルのオンデバイス版を公開する際のセキュリティ上の考慮事項について検討する。
まず、敵がデバイス上のモデルを悪用し、大きなモデルを攻撃しやすくすることを示す。
次に、フルスケールと効率的なモデルとの類似性が増加するにつれて、脆弱性が増加することを示す。
論文 参考訳(メタデータ) (2022-12-28T05:05:58Z) - Human Parity on CommonsenseQA: Augmenting Self-Attention with External
Attention [66.93307963324834]
本稿では,外部の知識や状況に配慮した外部アテンション機構を備えたトランスフォーマーアーキテクチャの強化を提案する。
提案した外部注意機構は,既存のAIシステムの性能を大幅に向上させることができる。
提案システムは、オープンなCommonsenseQA研究ベンチマークにおいて、89.4%の精度で人間に匹敵する88.9%の精度で人間に匹敵する。
論文 参考訳(メタデータ) (2021-12-06T18:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。