Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes
- URL: http://arxiv.org/abs/2507.19304v1
- Date: Fri, 25 Jul 2025 14:20:16 GMT
- Title: Multistream Network for LiDAR and Camera-based 3D Object Detection in Outdoor Scenes
- Authors: Muhammad Ibrahim, Naveed Akhtar, Haitian Wang, Saeed Anwar, Ajmal Mian,
- Abstract summary: Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy.<n>We propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities.
- Score: 59.78696921486972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fusion of LiDAR and RGB data has the potential to enhance outdoor 3D object detection accuracy. To address real-world challenges in outdoor 3D object detection, fusion of LiDAR and RGB input has started gaining traction. However, effective integration of these modalities for precise object detection task still remains a largely open problem. To address that, we propose a MultiStream Detection (MuStD) network, that meticulously extracts task-relevant information from both data modalities. The network follows a three-stream structure. Its LiDAR-PillarNet stream extracts sparse 2D pillar features from the LiDAR input while the LiDAR-Height Compression stream computes Bird's-Eye View features. An additional 3D Multimodal stream combines RGB and LiDAR features using UV mapping and polar coordinate indexing. Eventually, the features containing comprehensive spatial, textural and geometric information are carefully fused and fed to a detection head for 3D object detection. Our extensive evaluation on the challenging KITTI Object Detection Benchmark using public testing server at https://www.cvlibs.net/datasets/kitti/eval_object_detail.php?&result=d162ec699d6992040e34314d19ab7f5c217075e0 establishes the efficacy of our method by achieving new state-of-the-art or highly competitive results in different categories while remaining among the most efficient methods. Our code will be released through MuStD GitHub repository at https://github.com/IbrahimUWA/MuStD.git
Related papers
- Real-IAD D3: A Real-World 2D/Pseudo-3D/3D Dataset for Industrial Anomaly Detection [53.2590751089607]
Real-IAD D3 is a high-precision multimodal dataset that incorporates an additional pseudo3D modality generated through photometric stereo.<n>We introduce an effective approach that integrates RGB, point cloud, and pseudo-3D depth information to leverage the complementary strengths of each modality.<n>Our experiments highlight the importance of these modalities in boosting detection robustness and overall IAD performance.
arXiv Detail & Related papers (2025-04-19T08:05:47Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
Currently prevalent multimodal 3D detection methods are built upon LiDAR-based detectors that usually use dense Bird's-Eye-View feature maps.
Fully sparse architecture is gaining attention as they are highly efficient in long-range perception.
In this paper, we study how to effectively leverage image modality in the emerging fully sparse architecture.
arXiv Detail & Related papers (2023-04-24T17:57:43Z) - MSF3DDETR: Multi-Sensor Fusion 3D Detection Transformer for Autonomous
Driving [0.0]
We propose MSF3DDETR: Multi-Sensor Fusion 3D Detection Transformer architecture to fuse image and LiDAR features to improve the detection accuracy.
Our end-to-end single-stage, anchor-free and NMS-free network takes in multi-view images and LiDAR point clouds and predicts 3D bounding boxes.
MSF3DDETR network is trained end-to-end on the nuScenes dataset using Hungarian algorithm based bipartite matching and set-to-set loss inspired by DETR.
arXiv Detail & Related papers (2022-10-27T10:55:15Z) - RAANet: Range-Aware Attention Network for LiDAR-based 3D Object
Detection with Auxiliary Density Level Estimation [11.180128679075716]
Range-Aware Attention Network (RAANet) is developed for 3D object detection from LiDAR data for autonomous driving.
RAANet extracts more powerful BEV features and generates superior 3D object detections.
Experiments on nuScenes dataset demonstrate that our proposed approach outperforms the state-of-the-art methods for LiDAR-based 3D object detection.
arXiv Detail & Related papers (2021-11-18T04:20:13Z) - Frustum Fusion: Pseudo-LiDAR and LiDAR Fusion for 3D Detection [0.0]
We propose a novel data fusion algorithm to combine accurate point clouds with dense but less accurate point clouds obtained from stereo pairs.
We train multiple 3D object detection methods and show that our fusion strategy consistently improves the performance of detectors.
arXiv Detail & Related papers (2021-11-08T19:29:59Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
We propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images.
Our approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
arXiv Detail & Related papers (2020-09-09T20:23:27Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
Pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras.
PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs.
We introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end.
arXiv Detail & Related papers (2020-04-07T02:18:38Z) - 3D Object Detection From LiDAR Data Using Distance Dependent Feature
Extraction [7.04185696830272]
This work proposes an improvement for 3D object detectors by taking into account the properties of LiDAR point clouds over distance.
Results show that training separate networks for close-range and long-range objects boosts performance for all KITTI benchmark difficulties.
arXiv Detail & Related papers (2020-03-02T13:16:35Z) - DSGN: Deep Stereo Geometry Network for 3D Object Detection [79.16397166985706]
There is a large performance gap between image-based and LiDAR-based 3D object detectors.
Our method, called Deep Stereo Geometry Network (DSGN), significantly reduces this gap.
For the first time, we provide a simple and effective one-stage stereo-based 3D detection pipeline.
arXiv Detail & Related papers (2020-01-10T11:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.