CXR-CML: Improved zero-shot classification of long-tailed multi-label diseases in Chest X-Rays
- URL: http://arxiv.org/abs/2507.19398v1
- Date: Fri, 25 Jul 2025 16:05:47 GMT
- Title: CXR-CML: Improved zero-shot classification of long-tailed multi-label diseases in Chest X-Rays
- Authors: Rajesh Madhipati, Sheethal Bhat, Lukas Buess, Andreas Maier,
- Abstract summary: Class imbalance in the distribution of clinical findings presents a significant challenge for self-supervised deep learning models.<n>We propose a class-weighting mechanism that directly aligns with the distribution of classes within the latent space.<n>Our approach results in a notable average improvement of 7% points in zero-shot AUC scores across 40 classes in the MIMIC-CXR-JPG dataset.
- Score: 3.196204482566275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chest radiography (CXR) plays a crucial role in the diagnosis of various diseases. However, the inherent class imbalance in the distribution of clinical findings presents a significant challenge for current self-supervised deep learning models. These models often fail to accurately classify long-tailed classes. Current Vision-Language models such as Contrastive Language Image Pre-training (CLIP) models effectively model the manifold distribution of the latent space, enabling high zero-shot classification accuracies. Although CLIP performs well on most of the primary classes in the dataset, our work reveals that its effectiveness decreases significantly for classes with a long-tailed distribution. Our approach employs a class-weighting mechanism that directly aligns with the distribution of classes within the latent space. This method ensures a substantial improvement in overall classification performance, with particular emphasis on enhancing the recognition and accuracy of rarely observed classes. We accomplish this by applying Gaussian Mixture Model (GMM) clustering to the latent space. The subsequent clusters are further refined by Student t-distribution, followed by a metric loss that utilizes the altered embeddings. Our approach facilitates stable and adaptive clustering of the features. This results in a notable average improvement of 7\% points in zero-shot AUC scores across 40 classes in the MIMIC-CXR-JPG dataset from previous SOTA models.
Related papers
- Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
Few-shot learning enables models to generalize from only a few labeled examples.<n>We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.<n>Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
arXiv Detail & Related papers (2025-03-28T07:23:07Z) - Long-tailed Medical Diagnosis with Relation-aware Representation Learning and Iterative Classifier Calibration [14.556686415877602]
We propose a new Long-tailed Medical Diagnosis (LMD) framework for balanced medical image classification on long-tailed datasets.<n>Our framework significantly surpasses state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-05T14:57:23Z) - Solving the long-tailed distribution problem by exploiting the synergies and balance of different techniques [6.068761166911576]
Long-tailed data distribution is common, making it challenging for models trained on empirical risk minimisation to learn and classify tail classes effectively.<n>Our study delves into three long-tail recognition techniques: Supervised Contrastive Learning (SCL), Rare-Class Sample Generator (RSG), and Label-Distribution-Aware Margin Loss (LDAM)
arXiv Detail & Related papers (2025-01-23T15:35:15Z) - Electroencephalogram Emotion Recognition via AUC Maximization [0.0]
Imbalanced datasets pose significant challenges in areas including neuroscience, cognitive science, and medical diagnostics.<n>This study addresses the issue class imbalance, using the Liking' label in the DEAP dataset as an example.
arXiv Detail & Related papers (2024-08-16T19:08:27Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
Few-shot class-incremental learning aims at recognizing novel classes continually with limited novel class samples.
Recent methods somewhat alleviate the accuracy imbalance between base and incremental classes by fine-tuning the feature extractor in the incremental sessions.
We propose a novel method to mitigate model bias of the FSCIL problem during training and inference processes.
arXiv Detail & Related papers (2024-02-01T10:37:41Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Successive Subspace Learning for Cardiac Disease Classification with
Two-phase Deformation Fields from Cine MRI [36.044984400761535]
This work proposes a lightweight successive subspace learning framework for CVD classification.
It is based on an interpretable feedforward design, in conjunction with a cardiac atlas.
Compared with 3D CNN-based approaches, our framework achieves superior classification performance with 140$times$ fewer parameters.
arXiv Detail & Related papers (2023-01-21T15:00:59Z) - Learnable Distribution Calibration for Few-Shot Class-Incremental
Learning [122.2241120474278]
Few-shot class-incremental learning (FSCIL) faces challenges of memorizing old class distributions and estimating new class distributions given few training samples.
We propose a learnable distribution calibration (LDC) approach, with the aim to systematically solve these two challenges using a unified framework.
arXiv Detail & Related papers (2022-10-01T09:40:26Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
The goal of generalized zero-shot learning (GZSL) is to recognise both seen and unseen classes.
Most GZSL methods typically learn to synthesise visual representations from semantic information on the unseen classes.
We propose a novel framework that leverages dual variational autoencoders with a triplet loss to learn discriminative latent features.
arXiv Detail & Related papers (2021-01-09T05:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.