Linearly Convergent Algorithms for Nonsmooth Problems with Unknown Smooth Pieces
- URL: http://arxiv.org/abs/2507.19465v1
- Date: Fri, 25 Jul 2025 17:50:43 GMT
- Title: Linearly Convergent Algorithms for Nonsmooth Problems with Unknown Smooth Pieces
- Authors: Zhe Zhang, Suvrit Sra,
- Abstract summary: We develop efficient algorithms for optimizing piecewise smooth (PWS) functions where the underlying partition of the domain into smooth pieces is emph.
- Score: 38.01989268269625
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop efficient algorithms for optimizing piecewise smooth (PWS) functions where the underlying partition of the domain into smooth pieces is \emph{unknown}. For PWS functions satisfying a quadratic growth (QG) condition, we propose a bundle-level (BL) type method that achieves global linear convergence -- to our knowledge, the first such result for any algorithm for this problem class. We extend this method to handle approximately PWS functions and to solve weakly-convex PWS problems, improving the state-of-the-art complexity to match the benchmark for smooth non-convex optimization. Furthermore, we introduce the first verifiable and accurate termination criterion for PWS optimization. Similar to the gradient norm in smooth optimization, this certificate tightly characterizes the optimality gap under the QG condition, and can moreover be evaluated without knowledge of any problem parameters. We develop a search subroutine for this certificate and embed it within a guess-and-check framework, resulting in an almost parameter-free algorithm for both the convex QG and weakly-convex settings.
Related papers
- Adam assisted Fully informed Particle Swarm Optimzation ( Adam-FIPSO ) based Parameter Prediction for the Quantum Approximate Optimization Algorithm (QAOA) [1.024113475677323]
The Quantum Approximate Optimization Algorithm (QAOA) is a prominent variational algorithm used for solving optimization problems such as the Max-Cut problem.<n>A key challenge in QAOA lies in efficiently identifying suitable parameters that lead to high-quality solutions.
arXiv Detail & Related papers (2025-06-07T13:14:41Z) - Extended convexity and smoothness and their applications in deep learning [5.281849820329249]
This paper aims to elucidate the mechanisms of non-smooth optimization in deep learning.<n>Our analysis demonstrates that the gradient descent (SGD) algorithm can effectively minimize the empirical risk.
arXiv Detail & Related papers (2024-10-08T08:40:07Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
We consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries.
We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds.
arXiv Detail & Related papers (2024-06-28T02:56:22Z) - A Near-Optimal Single-Loop Stochastic Algorithm for Convex Finite-Sum Coupled Compositional Optimization [53.14532968909759]
We introduce an efficient single-loop primal-dual block-coordinate algorithm called ALEXR.<n>We establish the convergence rates of ALEXR in both convex and strongly convex cases under smoothness and non-smoothness conditions.<n> Experimental results on GDRO and partial Area Under the ROC Curve for cFCCO demonstrate the promising performance of our algorithm.
arXiv Detail & Related papers (2023-12-04T19:00:07Z) - A simple uniformly optimal method without line search for convex optimization [9.280355951055865]
We show that line search is superfluous in attaining the optimal rate of convergence for solving a convex optimization problem whose parameters are not given a priori.
We present a novel accelerated gradient descent type algorithm called AC-FGM that can achieve an optimal $mathcalO (1/k2)$ rate of convergence for smooth convex optimization.
arXiv Detail & Related papers (2023-10-16T05:26:03Z) - Self-concordant Smoothing for Large-Scale Convex Composite Optimization [0.0]
We introduce a notion of self-concordant smoothing for minimizing the sum of two convex functions, one of which is smooth and the other may be nonsmooth.
We prove the convergence of two resulting algorithms: Prox-N-SCORE, a proximal Newton algorithm and Prox-GGN-SCORE, a proximal generalized Gauss-Newton algorithm.
arXiv Detail & Related papers (2023-09-04T19:47:04Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.