Latent Representations of Intracardiac Electrograms for Atrial Fibrillation Driver Detection
- URL: http://arxiv.org/abs/2507.19547v1
- Date: Thu, 24 Jul 2025 09:40:24 GMT
- Title: Latent Representations of Intracardiac Electrograms for Atrial Fibrillation Driver Detection
- Authors: Pablo Peiro-Corbacho, Long Lin, Pablo Ávila, Alejandro Carta-Bergaz, Ángel Arenal, Carlos Sevilla-Salcedo, Gonzalo R. Ríos-Muñoz,
- Abstract summary: This study proposes a deep learning framework using convolutional autoencoders for unsupervised feature extraction.<n> latent representations of atrial electrical activity enable the characterization and automation of EGM analysis.<n>The proposed method can operate in real-time and enables integration into clinical electroanatomical mapping systems to assist in identifying arrhythmogenic regions during ablation procedures.
- Score: 37.72464514643607
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Atrial Fibrillation (AF) is the most prevalent sustained arrhythmia, yet current ablation therapies, including pulmonary vein isolation, are frequently ineffective in persistent AF due to the involvement of non-pulmonary vein drivers. This study proposes a deep learning framework using convolutional autoencoders for unsupervised feature extraction from unipolar and bipolar intracavitary electrograms (EGMs) recorded during AF in ablation studies. These latent representations of atrial electrical activity enable the characterization and automation of EGM analysis, facilitating the detection of AF drivers. The database consisted of 11,404 acquisitions recorded from 291 patients, containing 228,080 unipolar EGMs and 171,060 bipolar EGMs. The autoencoders successfully learned latent representations with low reconstruction loss, preserving the morphological features. The extracted embeddings allowed downstream classifiers to detect rotational and focal activity with moderate performance (AUC 0.73-0.76) and achieved high discriminative performance in identifying atrial EGM entanglement (AUC 0.93). The proposed method can operate in real-time and enables integration into clinical electroanatomical mapping systems to assist in identifying arrhythmogenic regions during ablation procedures. This work highlights the potential of unsupervised learning to uncover physiologically meaningful features from intracardiac signals.
Related papers
- DeepBoost-AF: A Novel Unsupervised Feature Learning and Gradient Boosting Fusion for Robust Atrial Fibrillation Detection in Raw ECG Signals [1.794794261751548]
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with elevated health risks.<n>This study introduces an innovative hybrid methodology integrating unsupervised deep learning and gradient boosting models to improve AF detection.
arXiv Detail & Related papers (2025-05-30T00:08:56Z) - Learning to Predict Global Atrial Fibrillation Dynamics from Sparse Measurements [71.49601301663651]
FibMap is a graph recurrent neural network model that reconstructs global AF dynamics from sparse measurements.<n>Trained and validated on 51 non-contact whole atria recordings, FibMap reconstructs whole atria dynamics from 10% surface coverage.<n>Clinical utility of FibMap is demonstrated on real-world contact mapping recordings, achieving reconstruction fidelity comparable to non-contact mapping.
arXiv Detail & Related papers (2025-02-13T16:36:25Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients [3.676588766498097]
Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia and is associated with increased morbidity and mortality.
This work presents an ensemble approach that integrates multiple machine learning models, including Unet, ResNet, EfficientNet and VGG, to perform automatic bi-atrial segmentation from LGE-MRI data.
arXiv Detail & Related papers (2024-09-24T13:33:46Z) - Deciphering Heartbeat Signatures: A Vision Transformer Approach to Explainable Atrial Fibrillation Detection from ECG Signals [4.056982620027252]
We develop a vision transformer approach to identify atrial fibrillation based on single-lead ECG data.
A residual network (ResNet) approach is also developed for comparison with the vision transformer approach.
arXiv Detail & Related papers (2024-02-12T11:04:08Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.