FedS2R: One-Shot Federated Domain Generalization for Synthetic-to-Real Semantic Segmentation in Autonomous Driving
- URL: http://arxiv.org/abs/2507.19881v1
- Date: Sat, 26 Jul 2025 09:24:00 GMT
- Title: FedS2R: One-Shot Federated Domain Generalization for Synthetic-to-Real Semantic Segmentation in Autonomous Driving
- Authors: Tao Lian, Jose L. Gómez, Antonio M. López,
- Abstract summary: Federated domain generalization has shown promising progress in image classification by enabling collaborative training across multiple clients without sharing raw data.<n>We propose FedS2R, the first one-shot federated domain generalization framework for synthetic-to-real semantic segmentation in autonomous driving.
- Score: 7.658092990342648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated domain generalization has shown promising progress in image classification by enabling collaborative training across multiple clients without sharing raw data. However, its potential in the semantic segmentation of autonomous driving remains underexplored. In this paper, we propose FedS2R, the first one-shot federated domain generalization framework for synthetic-to-real semantic segmentation in autonomous driving. FedS2R comprises two components: an inconsistency-driven data augmentation strategy that generates images for unstable classes, and a multi-client knowledge distillation scheme with feature fusion that distills a global model from multiple client models. Experiments on five real-world datasets, Cityscapes, BDD100K, Mapillary, IDD, and ACDC, show that the global model significantly outperforms individual client models and is only 2 mIoU points behind the model trained with simultaneous access to all client data. These results demonstrate the effectiveness of FedS2R in synthetic-to-real semantic segmentation for autonomous driving under federated learning
Related papers
- Federated Learning with Domain Shift Eraser [16.685557256108265]
Federated learning (FL) is emerging as a promising technique for collaborative learning without local data leaving their devices.<n>We propose a novel FL framework, Federated Domain Shift Eraser (FDSE), to improve model performance.
arXiv Detail & Related papers (2025-03-17T11:10:31Z) - Adapter-based Selective Knowledge Distillation for Federated
Multi-domain Meeting Summarization [36.916155654985936]
Meeting summarization has emerged as a promising technique for providing users with condensed summaries.
We propose adapter-based Federated Selective Knowledge Distillation (AdaFedSelecKD) for training performant client models.
arXiv Detail & Related papers (2023-08-07T03:34:01Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
Local training on non-iid distributed data results in deflected local optimum.
A natural solution is to gather all client data onto the server, such that the server has a global view of the entire data distribution.
In this paper, we put forth an idea to collect and leverage global knowledge on the server without hindering data privacy.
arXiv Detail & Related papers (2022-11-20T06:13:06Z) - FedSiam-DA: Dual-aggregated Federated Learning via Siamese Network under
Non-IID Data [21.95009868875851]
Federated learning can address data island, it remains challenging to train with data heterogeneous in a real application.
We propose FedSiam-DA, a novel dual-aggregated contrastive federated learning approach.
arXiv Detail & Related papers (2022-11-17T09:05:25Z) - A Closer Look at Personalization in Federated Image Classification [33.27317065917578]
Federated Learning (FL) is developed to learn a single global model across the decentralized data.
This paper shows that it is possible to achieve flexible personalization after the convergence of the global model.
We propose RepPer, an independent two-stage personalized FL framework.
arXiv Detail & Related papers (2022-04-22T06:32:18Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - MSeg: A Composite Dataset for Multi-domain Semantic Segmentation [100.17755160696939]
We present MSeg, a composite dataset that unifies semantic segmentation datasets from different domains.
We reconcile the generalization and bring the pixel-level annotations into alignment by relabeling more than 220,000 object masks in more than 80,000 images.
A model trained on MSeg ranks first on the WildDash-v1 leaderboard for robust semantic segmentation, with no exposure to WildDash data during training.
arXiv Detail & Related papers (2021-12-27T16:16:35Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
Federated learning (FL) enables distributed participants to collectively learn a strong global model without sacrificing their individual data privacy.
We introduce FedH2L, which is agnostic to both the model architecture and robust to different data distributions across participants.
In contrast to approaches sharing parameters or gradients, FedH2L relies on mutual distillation, exchanging only posteriors on a shared seed set between participants in a decentralized manner.
arXiv Detail & Related papers (2021-01-27T10:10:18Z) - Federated Unsupervised Representation Learning [56.715917111878106]
We formulate a new problem in federated learning called Federated Unsupervised Representation Learning (FURL) to learn a common representation model without supervision.
FedCA is composed of two key modules: dictionary module to aggregate the representations of samples from each client and share with all clients for consistency of representation space and alignment module to align the representation of each client on a base model trained on a public data.
arXiv Detail & Related papers (2020-10-18T13:28:30Z) - Unsupervised Domain Adaptation for Mobile Semantic Segmentation based on
Cycle Consistency and Feature Alignment [28.61782696432711]
We propose a novel Unsupervised Domain Adaptation (UDA) strategy to address the domain shift issue between real world and synthetic representations.
We show how the proposed strategy is able to obtain impressive performance in adapting a segmentation network trained on synthetic data to real world scenarios.
arXiv Detail & Related papers (2020-01-14T10:12:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.