論文の概要: CLoRA: Parameter-Efficient Continual Learning with Low-Rank Adaptation
- arxiv url: http://arxiv.org/abs/2507.19887v1
- Date: Sat, 26 Jul 2025 09:36:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.373084
- Title: CLoRA: Parameter-Efficient Continual Learning with Low-Rank Adaptation
- Title(参考訳): CLoRA:低ランク適応型パラメータ効率連続学習
- Authors: Shishir Muralidhara, Didier Stricker, René Schuster,
- Abstract要約: Low-Rank Adaptation (LoRA)は、クラスインクリメンタルセマンティックセグメンテーションのためのパラメータ効率の高い微調整法である。
CLoRAは、トレーニングのハードウェア要件を大幅に削減し、デプロイ後のリソース制約のある環境でのCLに適している。
- 参考スコア(独自算出の注目度): 14.2843647693986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past, continual learning (CL) was mostly concerned with the problem of catastrophic forgetting in neural networks, that arises when incrementally learning a sequence of tasks. Current CL methods function within the confines of limited data access, without any restrictions imposed on computational resources. However, in real-world scenarios, the latter takes precedence as deployed systems are often computationally constrained. A major drawback of most CL methods is the need to retrain the entire model for each new task. The computational demands of retraining large models can be prohibitive, limiting the applicability of CL in environments with limited resources. Through CLoRA, we explore the applicability of Low-Rank Adaptation (LoRA), a parameter-efficient fine-tuning method for class-incremental semantic segmentation. CLoRA leverages a small set of parameters of the model and uses the same set for learning across all tasks. Results demonstrate the efficacy of CLoRA, achieving performance on par with and exceeding the baseline methods. We further evaluate CLoRA using NetScore, underscoring the need to factor in resource efficiency and evaluate CL methods beyond task performance. CLoRA significantly reduces the hardware requirements for training, making it well-suited for CL in resource-constrained environments after deployment.
- Abstract(参考訳): 過去には、連続学習(CL)は主に、一連のタスクを漸進的に学習する際に発生するニューラルネットワークの破滅的な忘れの問題に関係していた。
現在のCLメソッドは、計算資源に制限を加えることなく、限られたデータアクセスの範囲内で機能する。
しかし、現実のシナリオでは、デプロイされたシステムがしばしば計算的に制約されるため、後者が優先される。
ほとんどのCLメソッドの大きな欠点は、新しいタスクごとにモデル全体を再トレーニングする必要があることである。
大規模モデルの再訓練の計算要求は禁じられ、限られた資源を持つ環境でのCLの適用性が制限される。
CLoRAを通じて,クラス増分セマンティックセグメンテーションのためのパラメータ効率の高い微調整法であるLoRAの適用性を検討した。
CLoRAはモデルの小さなパラメータセットを活用し、すべてのタスクをまたいだ学習に同じセットを使用する。
その結果, CLoRAの有効性を実証し, ベースライン法に匹敵する性能を示した。
我々はさらに,NetScore を用いて CLoRA の評価を行い,資源効率を考慮し,タスク性能を超える CL 手法を評価する。
CLoRAは、トレーニングのハードウェア要件を大幅に削減し、デプロイ後のリソース制約のある環境でのCLに適している。
関連論文リスト
- Parameter Efficient Continual Learning with Dynamic Low-Rank Adaptation [19.48677836920734]
連続学習(CL)におけるディープニューラルネットワークにとって、破滅的な忘れは依然として重要な課題である。
CLトレーニング中にLoRAコンポーネントの動的ランクアロケーションを必要とするリハーサルフリーなCLフレームワークであるPEARLを紹介する。
論文 参考訳(メタデータ) (2025-05-17T13:19:01Z) - C-LoRA: Continual Low-Rank Adaptation for Pre-trained Models [26.560293264523903]
Low-Rank Adaptation (LoRA) は、自然言語処理やコンピュータビジョンなどの分野で広く応用されている効率的な微調整手法である。
連続学習のためのLoRAの新たな拡張である連続低ランク適応(C-LoRA)を提案する。
C-LoRAは学習可能なルーティングマトリックスを使用して、タスク間のパラメータ更新を動的に管理する。
論文 参考訳(メタデータ) (2025-02-25T07:35:36Z) - SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
基礎モデルによる継続的な学習は、シーケンシャルなタスクに取り組むための事前トレーニング中に得られた豊富な知識を活用するための有望なパラダイムとして現れてきた。
既存のプロンプトベースおよびローランク適応ベース(LoRAベース)メソッドでは、プロンプト/ローラプールの拡張や、以前のタスクのサンプルの保持がしばしば必要である。
クラスインクリメンタル学習のためのスケーラブルデカップリングLoRA(SD-LoRA)を提案する。
論文 参考訳(メタデータ) (2025-01-22T20:00:41Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - LoRanPAC: Low-rank Random Features and Pre-trained Models for Bridging Theory and Practice in Continual Learning [103.45785408116146]
連続学習(CL)は、連続的に提示される複数のタスクを解決できるモデルを訓練することを目的としている。
最近のCLアプローチは、ダウンストリームタスクをうまく一般化する大規模な事前学習モデルを活用することで、強力なパフォーマンスを実現している。
しかし、これらの手法には理論的保証がなく、予期せぬ失敗をしがちである。
理論的に健全で高性能な単純なCL法を設計することで,このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2024-10-01T12:58:37Z) - Continual Learning on a Diet: Learning from Sparsely Labeled Streams Under Constrained Computation [123.4883806344334]
本研究では,学習アルゴリズムが学習段階ごとに制限された計算予算を付与する,現実的な連続学習環境について検討する。
この設定を,スパースラベル率の高い大規模半教師付き連続学習シナリオに適用する。
広範に分析と改善を行った結果,DietCLはラベル空間,計算予算,その他様々な改善の完全な範囲で安定していることがわかった。
論文 参考訳(メタデータ) (2024-04-19T10:10:39Z) - Hyperparameters in Continual Learning: A Reality Check [53.30082523545212]
連続学習(CL)は、可塑性(新しいタスクを学ぶ)と安定性(事前知識を保持する)のトレードオフをバランスしながら、一連のタスクでモデルを訓練することを目的としている。
論文 参考訳(メタデータ) (2024-03-14T03:13:01Z) - Computationally Budgeted Continual Learning: What Does Matter? [128.0827987414154]
CL (Continuous Learning) は、新しいデータに適応しながら、以前の知識を保存し、分布の異なる入力データのストリーム上でモデルを逐次訓練することを目的としている。
現在のCL文献では、以前のデータへのアクセス制限に焦点が当てられているが、トレーニングの計算予算に制約は課されていない。
本稿では,この問題を大規模ベンチマークで再検討し,計算制約条件下での従来のCL手法の性能解析を行う。
論文 参考訳(メタデータ) (2023-03-20T14:50:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。