A Survey on Generative Model Unlearning: Fundamentals, Taxonomy, Evaluation, and Future Direction
- URL: http://arxiv.org/abs/2507.19894v1
- Date: Sat, 26 Jul 2025 09:49:57 GMT
- Title: A Survey on Generative Model Unlearning: Fundamentals, Taxonomy, Evaluation, and Future Direction
- Authors: Xiaohua Feng, Jiaming Zhang, Fengyuan Yu, Chengye Wang, Li Zhang, Kaixiang Li, Yuyuan Li, Chaochao Chen, Jianwei Yin,
- Abstract summary: We review current research on Generative Model Unlearning (GenMU)<n>We propose a unified analytical framework for categorizing unlearning objectives, methodological strategies, and evaluation metrics.<n>We highlight the potential practical value of unlearning techniques in real-world applications.
- Score: 21.966560704390716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of generative models, associated privacy concerns have attracted growing attention. To address this, researchers have begun adapting machine unlearning techniques from traditional classification models to generative settings. Although notable progress has been made in this area, a unified framework for systematically organizing and integrating existing work is still lacking. The substantial differences among current studies in terms of unlearning objectives and evaluation protocols hinder the objective and fair comparison of various approaches. While some studies focus on specific types of generative models, they often overlook the commonalities and systematic characteristics inherent in Generative Model Unlearning (GenMU). To bridge this gap, we provide a comprehensive review of current research on GenMU and propose a unified analytical framework for categorizing unlearning objectives, methodological strategies, and evaluation metrics. In addition, we explore the connections between GenMU and related techniques, including model editing, reinforcement learning from human feedback, and controllable generation. We further highlight the potential practical value of unlearning techniques in real-world applications. Finally, we identify key challenges and outline future research directions aimed at laying a solid foundation for further advancements in this field. We consistently maintain the related open-source materials at https://github.com/caxLee/Generative-model-unlearning-survey.
Related papers
- A Comprehensive Survey on Continual Learning in Generative Models [35.76314482046672]
We present a comprehensive survey of continual learning methods for mainstream generative models.<n>We categorize these approaches into three paradigms: architecture-based, regularization-based, and replay-based.<n>We analyze continual learning setups for different generative models, including training objectives, benchmarks, and core backbones.
arXiv Detail & Related papers (2025-06-16T02:27:25Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Unified Multimodal Understanding and Generation Models: Advances, Challenges, and Opportunities [22.476740954286836]
We present a comprehensive survey aimed at guiding future research.<n>We review existing unified models, categorizing them into three main architectural paradigms.<n>We discuss the key challenges facing this nascent field, including tokenization strategy, cross-modal attention, and data.
arXiv Detail & Related papers (2025-05-05T11:18:03Z) - Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning [51.0864247376786]
We introduce a Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process.<n>During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text.
arXiv Detail & Related papers (2025-03-24T07:20:43Z) - From Task-Specific Models to Unified Systems: A Review of Model Merging Approaches [13.778158813149833]
This paper establishes a new taxonomy of model merging methods, systematically comparing different approaches and providing an overview of key developments.<n>Despite the rapid progress in this field, a comprehensive taxonomy and survey summarizing recent advances and predicting future directions are still lacking.
arXiv Detail & Related papers (2025-03-12T02:17:31Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism.
We have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge.
arXiv Detail & Related papers (2024-03-27T05:10:38Z) - Unifying Self-Supervised Clustering and Energy-Based Models [9.3176264568834]
We establish a principled connection between self-supervised learning and generative models.<n>We show that our solution can be integrated into a neuro-symbolic framework to tackle a simple yet non-trivial instantiation of the symbol grounding problem.
arXiv Detail & Related papers (2023-12-30T04:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.