論文の概要: DriveIndia: An Object Detection Dataset for Diverse Indian Traffic Scenes
- arxiv url: http://arxiv.org/abs/2507.19912v3
- Date: Tue, 12 Aug 2025 06:06:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 18:56:18.621571
- Title: DriveIndia: An Object Detection Dataset for Diverse Indian Traffic Scenes
- Title(参考訳): DriveIndia: インド横断交通シーンのオブジェクト検出データセット
- Authors: Rishav Kumar, D. Santhosh Reddy, P. Rajalakshmi,
- Abstract要約: DriveIndiaは、インドの交通環境の複雑さと予測不可能性を捉えるために構築された、大規模なオブジェクト検出データセットである。
データセットには、24のトラフィック関連オブジェクトカテゴリにわたるYOLOフォーマットで注釈付けされた66,986の高解像度イメージが含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce DriveIndia, a large-scale object detection dataset purpose-built to capture the complexity and unpredictability of Indian traffic environments. The dataset contains 66,986 high-resolution images annotated in YOLO format across 24 traffic-relevant object categories, encompassing diverse conditions such as varied weather (fog, rain), illumination changes, heterogeneous road infrastructure, and dense, mixed traffic patterns and collected over 120+ hours and covering 3,400+ kilometers across urban, rural, and highway routes. DriveIndia offers a comprehensive benchmark for real-world autonomous driving challenges. We provide baseline results using state-of-the-art YOLO family models, with the top-performing variant achieving a mAP50 of 78.7%. Designed to support research in robust, generalizable object detection under uncertain road conditions, DriveIndia will be publicly available via the TiHAN-IIT Hyderabad dataset repository https://tihan.iith.ac.in/TiAND.html (Terrestrial Datasets -> Camera Dataset).
- Abstract(参考訳): インドにおける交通環境の複雑さと予測不可能性を捉えるために構築された大規模オブジェクト検出データセットであるDriveIndiaを紹介した。
データセットには、気象(霧、雨)、照明の変化、不均一な道路インフラ、密集した混成交通パターンを含む24の交通関連対象カテゴリに、YOLO形式で注釈付けされた66,986の高解像度画像が含まれ、120時間以上にわたって収集され、都市、農村、高速道路の3400km以上をカバーしている。
DriveIndiaは、現実世界の自動運転の課題に関する総合的なベンチマークを提供している。
我々は、最先端のYOLOファミリーモデルを用いてベースライン結果を提供し、最高性能の変種は78.7%のmAP50を達成する。
DriveIndiaは、不確実な道路条件下での堅牢で汎用的な物体検出の研究を支援するために設計され、TiHAN-IIT Hyderabadデータセットリポジトリ https://tihan.iith.ac.in/TiAND.html (Terrestrial Datasets -> Camera Dataset) を通じて公開される。
関連論文リスト
- DAVE: Diverse Atomic Visual Elements Dataset with High Representation of Vulnerable Road Users in Complex and Unpredictable Environments [60.69159598130235]
Vulnerable Road Users (VRU) の高表現による認識手法の評価を目的とした新しいデータセット DAVE を提案する。
DAVEは16種類のアクターカテゴリー(動物、人間、車など)と16種類のアクションタイプ(カットイン、ジグザグ運動、Uターンなど、複雑で稀なケース)を手動でアノテートしたデータセットである。
実験の結果,既存の手法はDAVEで評価すると性能の劣化に悩まされ,将来的なビデオ認識研究のメリットを浮き彫りにしていることがわかった。
論文 参考訳(メタデータ) (2024-12-28T06:13:44Z) - ROAD-Waymo: Action Awareness at Scale for Autonomous Driving [17.531603453254434]
ROAD-Waymoは、道路シーンにおけるエージェント、アクション、位置、イベント検出の技術の開発とベンチマークのための広範なデータセットである。
既存のデータセット(および複数の都市を含む)よりもかなり大きく、より困難なものには、198kの注釈付きビデオフレーム、54kのエージェントチューブ、3.9Mのバウンディングボックス、合計12.4Mのラベルがある。
論文 参考訳(メタデータ) (2024-11-03T20:46:50Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - BadODD: Bangladeshi Autonomous Driving Object Detection Dataset [0.0]
バングラデシュの9地区にわたる多様な運転環境における物体検出のための包括的データセットを提案する。
スマートフォンカメラからのみ収集されたデータセットは、現実のシナリオを現実的に表現したものだ。
論文 参考訳(メタデータ) (2024-01-19T12:26:51Z) - RSUD20K: A Dataset for Road Scene Understanding In Autonomous Driving [6.372000468173298]
RSUD20Kは、バングラデシュの道路の運転から見た20K以上の高解像度画像からなる、道路シーン理解のための新しいデータセットである。
我々の作業は以前の取り組みを大幅に改善し、詳細なアノテーションを提供し、オブジェクトの複雑さを増大させます。
論文 参考訳(メタデータ) (2024-01-14T16:10:42Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
道路表面の再構築は、車両の走行計画と制御システムの解析と予測を促進するのに役立つ。
我々は,様々な運転条件下で,特定のプラットフォームで収集した実世界,高解像度,高精度のデータセットであるRoad Surface Reconstructionデータセットを紹介した。
約16,000対のステレオ画像、原点雲、地中深度・不均等地図を含む一般的な道路形態を網羅している。
論文 参考訳(メタデータ) (2023-10-03T17:59:32Z) - A POV-based Highway Vehicle Trajectory Dataset and Prediction
Architecture [2.924868086534434]
本稿では,車載トラジェクトリ,検出,追跡データセットであるEmphCarolinas Highway dataset (CHDfootnoteemphCHD)を紹介する。
また、注目に基づくグラフ同型と畳み込みニューラルネットワークを用いた新しい車両軌道予測アーキテクチャであるemphPishguVeを提案する。
その結果、emphPishguVeは既存のアルゴリズムより優れており、鳥の目、目、高角POVにおける新しい最先端(SotA)となることが示された。
論文 参考訳(メタデータ) (2023-03-10T20:38:40Z) - IDD-3D: Indian Driving Dataset for 3D Unstructured Road Scenes [79.18349050238413]
デプロイ可能なディープラーニングアーキテクチャの準備とトレーニングには、さまざまなトラフィックシナリオに適したモデルが必要である。
インドなどいくつかの発展途上国で見られる非構造的で複雑な運転レイアウトは、これらのモデルに挑戦している。
我々は、複数のカメラと12kの注釈付き駆動LiDARフレームを備えたLiDARセンサーのマルチモーダルデータからなる新しいデータセットIDD-3Dを構築した。
論文 参考訳(メタデータ) (2022-10-23T23:03:17Z) - An Indian Roads Dataset for Supported and Suspended Traffic Lights
Detection [6.6268035955374005]
本稿では、先進国とインド道路に基づく既存のデータセットの徹底的な比較について述べる。
私たちのデータセットは、サイズ、アノテーション、分散の以前のインドのトラフィックライトデータセットを超えています。
サイズ、撮影装置、多くの都市、交通光の向きのバリエーションなど、さまざまなデータセットの基準が考慮されている。
論文 参考訳(メタデータ) (2022-09-09T09:37:50Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
我々は、ビジョンベース検出器のこの重要な問題を露呈する、CODAという挑戦的なデータセットを導入する。
大規模自動運転データセットで訓練された標準物体検出器の性能は、mARの12.8%以下に著しく低下した。
我々は最先端のオープンワールドオブジェクト検出器を実験し、CODAの新しいオブジェクトを確実に識別できないことを発見した。
論文 参考訳(メタデータ) (2022-03-15T08:32:56Z) - METEOR: A Massive Dense & Heterogeneous Behavior Dataset for Autonomous
Driving [42.69638782267657]
本稿では、インドにおける非構造化シナリオにおけるトラフィックパターンをキャプチャする、新しい複雑なトラフィックデータセットMETEORを提案する。
METEORは1000分以上のビデオクリップと、エゴ車軌道を持つ200万以上の注釈付きフレームと、周囲の車両や交通機関のための1300万以上のバウンディングボックスで構成されている。
我々は,オブジェクト検出と行動予測アルゴリズムの性能を評価するために,新しいデータセットを用いた。
論文 参考訳(メタデータ) (2021-09-16T01:01:55Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
自律運転シナリオにおける3次元物体検出のためのONCEデータセットを提案する。
データは、利用可能な最大の3D自動運転データセットよりも20倍長い144時間の運転時間から選択される。
我々はONCEデータセット上で、様々な自己教師的・半教師的手法を再現し、評価する。
論文 参考訳(メタデータ) (2021-06-21T12:28:08Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
本稿では、歩行者を共同で検出し、32の歩行者属性を認識するという課題に対処する。
本稿では,複合フィールドフレームワークを用いたマルチタスク学習(MTL)モデルを提案する。
競合検出と属性認識の結果と,より安定したMTLトレーニングを示す。
論文 参考訳(メタデータ) (2020-12-04T15:10:12Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
マルチオブジェクトトラッキング(MOT)は、自動運転車の安全な配備の前提条件である。
観測対象間の依存関係をエンコードするトラック埋め込みの計算に注目するMOTに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-08-18T03:40:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。