Bipartite and tripartite entanglement in an optomechanical ring cavity
- URL: http://arxiv.org/abs/2411.05190v1
- Date: Thu, 07 Nov 2024 21:30:44 GMT
- Title: Bipartite and tripartite entanglement in an optomechanical ring cavity
- Authors: Oumayma El Bir, Abderrahim Lakhfif, Abdallah Slaoui,
- Abstract summary: Entanglement serves as a core resource for quantum information technologies.
This study gives a unifying description of the stationary bipartite and tripartite entanglement in a coupled optomechanical ring cavity.
- Score: 0.0
- License:
- Abstract: Entanglement serves as a core resource for quantum information technologies, including applications in quantum cryptography, quantum metrology, and quantum communication. In this study, we give a unifying description of the stationary bipartite and tripartite entanglement in a coupled optomechanical ring cavity comprising photon and phonon modes. We numerically analyze the stationary entanglement between the optical mode and each mechanical mode, as well as between the two mechanical modes, using the logarithmic negativity. Our results demonstrate that mechanical entanglement between the two mechanical modes is highly dependent on the optical normalized detuning and the mechanical coupling strength, with entanglement maximized within specific detuning intervals and increased coupling broadening the effective range. Furthermore, we study the entanglement's sensitivity to temperature, noting that higher coupling strengths can sustain entanglement at elevated temperatures. The study also reveals that the entanglement between the mechanical mode and the optical mode is enhanced with increasing laser power, but is similarly susceptible to thermal noise. Additionally, we explore tripartite entanglement through the minimum residual contangle, highlighting its dependence on detuning, temperature, and laser power. Our findings underscore the importance of parameter control in optimizing entanglement for quantum information processing applications.
Related papers
- Optimizing Entanglement in Nanomechanical Resonators through Quantum Squeezing and Parametric Amplification [0.0]
We propose a scheme that optimize entanglement in nanomechanical resonators through quantum state transfer of squeezed fields assisted by radiation pressure.
The system is driven by red-detuned laser fields, which enable simultaneous cooling of the mechanical resonators.
arXiv Detail & Related papers (2024-10-20T09:37:30Z) - Simultaneous photon and phonon lasing in a two-tone driven optomechanical system [1.81283871144609]
We show how to achieve simultaneous lasing of photons and phonons in optomechanical setups.
Our work paves the way for the development of novel strategies for the optimisation of optomechanical interactions.
arXiv Detail & Related papers (2024-10-03T17:16:41Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Strong coupling at room temperature with a centimeter-scale quartz crystal [0.0]
We report an optomechanical system with independent control over pumping power and frequency detuning to achieve and characterize the strong-coupling regime of a bulk acoustic-wave resonator.
Our results provide valuable insights into the performances of room-temperature macroscopic mechanical systems and their applications in hybrid quantum devices.
arXiv Detail & Related papers (2024-05-28T12:15:05Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Phononically shielded photonic-crystal mirror membranes for cavity
quantum optomechanics [48.7576911714538]
We present a highly reflective, sub-wavelength-thick membrane resonator featuring high mechanical quality factor.
We construct a Fabry-Perot-type optical cavity, with the membrane forming one terminating mirror.
We demonstrate optomechanical sideband cooling to mK-mode temperatures, starting from room temperature.
arXiv Detail & Related papers (2022-12-23T04:53:04Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Single-mode input squeezing and tripartite entanglement in three-mode
ponderomotive optomechanics simulations [0.0]
This article proposes a new scheme in which two single-mode squeezed light fields are injected into an optomechanical cavity.
We demonstrate through our numerical simulations that the quantum entanglement can be substantially enhanced with the careful selection of squeezing strength and squeezing angle of the two quadrature squeezed light fields.
arXiv Detail & Related papers (2021-07-15T00:25:59Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.