論文の概要: Matching Game Preferences Through Dialogical Large Language Models: A Perspective
- arxiv url: http://arxiv.org/abs/2507.20000v1
- Date: Sat, 26 Jul 2025 16:40:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.665771
- Title: Matching Game Preferences Through Dialogical Large Language Models: A Perspective
- Title(参考訳): 対話型大規模言語モデルによるゲーム嗜好のマッチング
- Authors: Renaud Fabre, Daniel Egret, Patrice Bellot,
- Abstract要約: 本稿では,Large Language Models (LLM) と GRAPHYP のネットワークシステムをどのように組み合わせるかを検討することによって,「対話型知能」の将来の可能性について検討する。
我々は,AIを透明かつトレーサビリティにするための概念的フレームワークを提案する。
この視点の目標は、回答を提供するだけでなく、その回答がどのように到達したかをユーザーに示すAIシステムを構想することである。
- 参考スコア(独自算出の注目度): 0.6827423171182154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This perspective paper explores the future potential of "conversational intelligence" by examining how Large Language Models (LLMs) could be combined with GRAPHYP's network system to better understand human conversations and preferences. Using recent research and case studies, we propose a conceptual framework that could make AI rea-soning transparent and traceable, allowing humans to see and understand how AI reaches its conclusions. We present the conceptual perspective of "Matching Game Preferences through Dialogical Large Language Models (D-LLMs)," a proposed system that would allow multiple users to share their different preferences through structured conversations. This approach envisions personalizing LLMs by embedding individual user preferences directly into how the model makes decisions. The proposed D-LLM framework would require three main components: (1) reasoning processes that could analyze different search experiences and guide performance, (2) classification systems that would identify user preference patterns, and (3) dialogue approaches that could help humans resolve conflicting information. This perspective framework aims to create an interpretable AI system where users could examine, understand, and combine the different human preferences that influence AI responses, detected through GRAPHYP's search experience networks. The goal of this perspective is to envision AI systems that would not only provide answers but also show users how those answers were reached, making artificial intelligence more transparent and trustworthy for human decision-making.
- Abstract(参考訳): 本稿では,Large Language Models (LLM) と GRAPHYP のネットワークシステムを組み合わせることで,人間の会話や嗜好をよりよく理解する「会話知能」の今後の可能性について検討する。
近年の研究やケーススタディを用いて、AIが透明でトレーサビリティを実現し、人間がAIがどのように結論に達するかを観察し理解できるようにする概念的なフレームワークを提案する。
本稿では,対話型言語モデル(D-LLMs)によるゲーム嗜好のマッチングという概念的視点について述べる。
このアプローチでは、モデルの意思決定方法に直接個々のユーザの好みを埋め込むことによって、LLMをパーソナライズする。
提案したD-LLMフレームワークは,(1)異なる検索経験を解析し,指導性能を誘導する推論プロセス,(2)ユーザの嗜好パターンを識別する分類システム,(3)人間が矛盾する情報の解決に役立てる対話アプローチの3つの主要なコンポーネントを必要とする。
このパースペクティブフレームワークは,GraphYPの検索エクスペリエンスネットワークを通じて検出された,AI応答に影響を与えるさまざまな人間の嗜好を調べ,理解し,組み合わせることのできる,解釈可能なAIシステムの構築を目的としている。
この視点の目標は、回答を提供するだけでなく、その回答がどのように到達したかをユーザーに示すAIシステムを構想することであり、人工知能をより透明性が高く、人間の意思決定にふさわしいものにすることである。
関連論文リスト
- UniConv: Unifying Retrieval and Response Generation for Large Language Models in Conversations [71.79210031338464]
会話における大規模言語モデルに対する高密度検索と応答生成の統一方法を示す。
目的の異なる共同微調整を行い、不整合リスクを低減するための2つのメカニズムを設計する。
5つの対話型検索データセットの評価は、我々の統合モデルがタスクを相互に改善し、既存のベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2025-07-09T17:02:40Z) - AIGI-Holmes: Towards Explainable and Generalizable AI-Generated Image Detection via Multimodal Large Language Models [78.08374249341514]
AI生成コンテンツ(AIGC)の急速な発展は、誤情報を拡散するAIGIの誤用につながった。
大規模で包括的なデータセットであるHolmes-Setを導入し、画像がAI生成されているかどうかを解説したインストラクションチューニングデータセットを含む。
本研究は,MLLMの構造化説明と品質管理によるデータ生成を効率化する,Multi-Expert Juryと呼ばれる効率的なデータアノテーション手法を提案する。
さらに,視覚専門家による事前学習,教師付き微調整,直接選好最適化を含む3段階学習フレームワークであるHolmes Pipelineを提案する。
論文 参考訳(メタデータ) (2025-07-03T14:26:31Z) - Interactive Reasoning: Visualizing and Controlling Chain-of-Thought Reasoning in Large Language Models [54.85405423240165]
トピックの階層構造としてチェーンオブ思考出力を可視化するインタラクション設計であるInteractive Reasoningを導入する。
私たちは、不確実なトレードオフに直面したAIによる意思決定のプロトタイプであるHippoで、インタラクティブな推論を実装しています。
論文 参考訳(メタデータ) (2025-06-30T10:00:43Z) - Towards Anthropomorphic Conversational AI Part I: A Practical Framework [49.62013440962072]
会話に関わる人間の知性の重要な側面を再現するために設計されたマルチモジュールフレームワークを導入する。
アプローチの第2段階では、これらの会話データは、フィルタリングとラベル付けの後に、強化学習のためのトレーニングおよびテストデータとして機能する。
論文 参考訳(メタデータ) (2025-02-28T03:18:39Z) - Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision [50.23246260804145]
本研究は, 聴覚, 視覚, 言語的モダリティを統合した, 産業レベルのOmni-Modal Large Language Model (LLM) パイプラインを提案する。
まず、様々なエンコーダ-LLM-デコーダアーキテクチャの柔軟な構成を可能にするモジュラーフレームワークです。
第二に、最先端のビジョン言語モデルであるQwen2.5-VLのオーディオ言語アライメントを事前訓練する軽量なトレーニング戦略である。
第三に、様々な現実世界のシナリオから高品質な音声テキストデータを生成するオーディオ合成パイプライン。
論文 参考訳(メタデータ) (2025-02-26T17:26:36Z) - Mechanistic understanding and validation of large AI models with SemanticLens [13.712668314238082]
航空機のような人間工学的なシステムとは異なり、AIモデルの内部動作はほとんど不透明である。
本稿では、コンポーネントによって符号化された隠れた知識をマッピングするニューラルネットワークの普遍的説明法であるSemanticLensを紹介する。
論文 参考訳(メタデータ) (2025-01-09T17:47:34Z) - Found in Translation: semantic approaches for enhancing AI interpretability in face verification [0.4222205362654437]
本研究は,XAIフレームワークに意味概念を統合することで,モデル出力と人間の理解の包括的ギャップを埋めることにより,これまでの研究を拡張した。
ユーザが選択した顔のランドマークによって定義された意味的特徴を用いて,グローバルな説明とローカルな説明を組み合わせた新しいアプローチを提案する。
結果は、セマンティックベースのアプローチ、特に最も詳細なセットは、従来の手法よりも、モデル決定をよりきめ細やかな理解を提供することを示している。
論文 参考訳(メタデータ) (2025-01-06T08:34:53Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
本研究では,ビジョン・ランゲージ(VL)基礎モデルと大規模言語モデル(LLM)を用いて,オープンワールド環境におけるユニバーサルインタラクション認識について検討する。
我々の設計にはHO Prompt-guided Decoder (HOPD) が含まれており、基礎モデルにおける高次関係表現と画像内の様々なHOペアとの結合を容易にする。
オープンカテゴリの対話認識では,対話文と解釈文の2つのタイプがサポートされている。
論文 参考訳(メタデータ) (2023-11-07T08:27:32Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
本稿では,コンテキストオブジェクト検出の新たな研究課題について紹介する。
言語クローゼテスト,視覚キャプション,質問応答の3つの代表的なシナリオについて検討した。
本稿では、視覚的コンテキストのエンドツーエンドの微分可能なモデリングが可能な統合マルチモーダルモデルContextDETを提案する。
論文 参考訳(メタデータ) (2023-05-29T17:50:33Z) - DetGPT: Detect What You Need via Reasoning [33.00345609506097]
我々は、推論に基づくオブジェクト検出と呼ばれる、オブジェクト検出のための新しいパラダイムを導入する。
特定のオブジェクト名に依存する従来のオブジェクト検出方法とは異なり,本手法では自然言語命令を用いてシステムと対話することが可能である。
提案手法はDetGPTと呼ばれ,最先端のマルチモーダルモデルとオープンボキャブラリオブジェクト検出器を利用する。
論文 参考訳(メタデータ) (2023-05-23T15:37:28Z) - Selective Explanations: Leveraging Human Input to Align Explainable AI [40.33998268146951]
人間の入力を小さなサンプルに利用して選択的な説明を生成するための一般的なフレームワークを提案する。
事例として,意思決定支援タスクを用いて,意思決定者が決定タスクにどう関係するかに基づいて,選択的な説明を探索する。
我々の実験は、AIへの過度な依存を減らすための選択的な説明の可能性を実証している。
論文 参考訳(メタデータ) (2023-01-23T19:00:02Z) - Dialogue history integration into end-to-end signal-to-concept spoken
language understanding systems [10.746852024552334]
本研究では,音声言語理解システムにおける対話履歴表現のための埋め込みについて検討する。
我々は対話履歴をエンドツーエンドのSLUシステムに統合することを提案した。
本稿では,3種類のhベクトルを提案し,実験的に評価した。
論文 参考訳(メタデータ) (2020-02-14T13:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。