論文の概要: Dialogue history integration into end-to-end signal-to-concept spoken
language understanding systems
- arxiv url: http://arxiv.org/abs/2002.06012v1
- Date: Fri, 14 Feb 2020 13:09:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 05:07:53.855663
- Title: Dialogue history integration into end-to-end signal-to-concept spoken
language understanding systems
- Title(参考訳): 音声言語理解システムにおける対話履歴の統合
- Authors: Natalia Tomashenko, Christian Raymond, Antoine Caubriere, Renato De
Mori, Yannick Esteve
- Abstract要約: 本研究では,音声言語理解システムにおける対話履歴表現のための埋め込みについて検討する。
我々は対話履歴をエンドツーエンドのSLUシステムに統合することを提案した。
本稿では,3種類のhベクトルを提案し,実験的に評価した。
- 参考スコア(独自算出の注目度): 10.746852024552334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work investigates the embeddings for representing dialog history in
spoken language understanding (SLU) systems. We focus on the scenario when the
semantic information is extracted directly from the speech signal by means of a
single end-to-end neural network model. We proposed to integrate dialogue
history into an end-to-end signal-to-concept SLU system. The dialog history is
represented in the form of dialog history embedding vectors (so-called
h-vectors) and is provided as an additional information to end-to-end SLU
models in order to improve the system performance. Three following types of
h-vectors are proposed and experimentally evaluated in this paper: (1)
supervised-all embeddings predicting bag-of-concepts expected in the answer of
the user from the last dialog system response; (2) supervised-freq embeddings
focusing on predicting only a selected set of semantic concept (corresponding
to the most frequent errors in our experiments); and (3) unsupervised
embeddings. Experiments on the MEDIA corpus for the semantic slot filling task
demonstrate that the proposed h-vectors improve the model performance.
- Abstract(参考訳): 本研究では,音声言語理解システム(SLU)における対話履歴の埋め込みについて検討する。
本稿では,音声信号から直接意味情報を抽出するシナリオを,単一エンドツーエンドニューラルネットワークモデルを用いて考察する。
対話履歴をエンドツーエンドのsluシステムに統合する提案を行った。
ダイアログ履歴は、ダイアログ履歴埋め込みベクトル(いわゆるhベクトル)の形式で表現され、システム性能を改善するために、エンドツーエンドのSLUモデルに追加情報として提供される。
本報告では,最後のダイアログシステム応答からユーザから期待される概念のバッグ・オブ・コンセプトを予測する教師型全埋め込み,選択されたセマンティックな概念のセットのみを予測する教師型全埋め込み(実験において最も頻繁なエラーに対応する),そして,(3)教師型非教師型埋め込みの3つの方法を提案する。
セマンティクススロット充填タスクのためのメディアコーパス実験により,提案するh-ベクトルがモデル性能を向上させることを実証した。
関連論文リスト
- Joint Modelling of Spoken Language Understanding Tasks with Integrated
Dialog History [30.20353302347147]
本研究では,発話の意図,対話行動,話者の役割,感情を共同で予測するために,対話コンテキストを学習する新しいモデルアーキテクチャを提案する。
本実験は,タスク固有分類器と類似した結果が得られることを示す。
論文 参考訳(メタデータ) (2023-05-01T16:26:18Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUSは、任意の新しいドメインでの対話を要約するための訓練済みエンコーダデコーダモデルである。
実験の結果,DIONYSUSは6つのデータセット上で既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2022-12-20T06:21:21Z) - SPACE-3: Unified Dialog Model Pre-training for Task-Oriented Dialog
Understanding and Generation [123.37377363355363]
SPACE-3は、大規模対話コーパスから学習する、新しい半教師付き会話モデルである。
幅広いダウンストリームダイアログタスクを効果的に微調整できる。
その結果、SPACE-3は8つの下流ダイアログベンチマークで最先端のパフォーマンスを達成することがわかった。
論文 参考訳(メタデータ) (2022-09-14T14:17:57Z) - SPACE-2: Tree-Structured Semi-Supervised Contrastive Pre-training for
Task-Oriented Dialog Understanding [68.94808536012371]
本稿では,限定ラベル付きダイアログと大規模未ラベルダイアログコーパスから対話表現を学習する,木構造付き事前学習会話モデルを提案する。
提案手法は,7つのデータセットと4つの一般的な対話理解タスクからなるDialoGLUEベンチマークにおいて,最新の結果が得られる。
論文 参考訳(メタデータ) (2022-09-14T13:42:50Z) - Achieving Conversational Goals with Unsupervised Post-hoc Knowledge
Injection [37.15893335147598]
現在のニューラルダイアログモデルの制限は、生成された応答における特異性と情報性の欠如に悩まされる傾向があることである。
本稿では,対話履歴と既存の対話モデルから初期応答の両方を条件とした,多様な知識スニペットの集合を検索する,ポストホックな知識注入手法を提案する。
我々は,各検索したスニペットを,勾配に基づく復号法を用いて初期応答に個別に注入し,教師なしランキングステップで最終応答を選択する複数の候補応答を構築する。
論文 参考訳(メタデータ) (2022-03-22T00:42:27Z) - An Approach to Inference-Driven Dialogue Management within a Social
Chatbot [10.760026478889667]
会話を一連の応答生成タスクとしてフレーミングする代わりに、会話を協調推論プロセスとしてモデル化する。
私たちのパイプラインは、このモデリングを3つの幅広い段階で達成します。
このアプローチは、ユーザ入力の潜在意味論、フレキシブルなイニシアティブの取り方、対話コンテキストに新しく一貫性のある応答を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-31T19:01:07Z) - Language Model as an Annotator: Exploring DialoGPT for Dialogue
Summarization [29.887562761942114]
本稿では,対話応答生成のための事前学習モデルであるDialoGPTを,教師なし対話アノテータとして開発する方法を示す。
ダイアロGPTを用いて、2つの対話要約データセット(SAMSumとAMI)に3種類の特徴をラベル付けし、事前学習モデルと非訓練モデルを用いて要約する。
論文 参考訳(メタデータ) (2021-05-26T13:50:13Z) - Probing Task-Oriented Dialogue Representation from Language Models [106.02947285212132]
本稿では,タスク指向対話タスクにおいて,どのモデルが本質的に最も有意義な表現を担っているかを明らかにするために,事前学習された言語モデルについて検討する。
我々は、アノテートラベルを教師付き方法で固定された事前学習言語モデルの上に、分類器プローブとしてフィードフォワード層を微調整する。
論文 参考訳(メタデータ) (2020-10-26T21:34:39Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。