論文の概要: Dependency Network-Based Portfolio Design with Forecasting and VaR Constraints
- arxiv url: http://arxiv.org/abs/2507.20039v1
- Date: Sat, 26 Jul 2025 18:53:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:56.766418
- Title: Dependency Network-Based Portfolio Design with Forecasting and VaR Constraints
- Title(参考訳): 予測とVaR制約を考慮した依存ネットワークベースポートフォリオ設計
- Authors: Zihan Lin, Haojie Liu, Randall R. Rojas,
- Abstract要約: 本研究では,統計的ソーシャルネットワーク分析と時系列予測とリスク管理を統合したポートフォリオ最適化フレームワークを提案する。
S&P500(2020-2024)の毎日の株価データを用いて、Vector Autoregression(VAR)とForecast Error Variance Decomposition(FEVD)を介して依存ネットワークを構築します。
FEVDは、VARの予測誤差のばらつきを分解し、各株価のショックが、我々のネットワークにおいて影響ベースのエッジ重みを形成するために反転する他の不確実性情報にどれだけ寄与するかを定量化する。
リスク・アット・リスク(リスク・アット・リスク)に基づいて資本を割り当てた、トップランクの株式を使って動的ポートフォリオを構築する。
- 参考スコア(独自算出の注目度): 8.107171581224312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a novel portfolio optimization framework that integrates statistical social network analysis with time series forecasting and risk management. Using daily stock data from the S&P 500 (2020-2024), we construct dependency networks via Vector Autoregression (VAR) and Forecast Error Variance Decomposition (FEVD), transforming influence relationships into a cost-based network. Specifically, FEVD breaks down the VAR's forecast error variance to quantify how much each stock's shocks contribute to another's uncertainty information we invert to form influence-based edge weights in our network. By applying the Minimum Spanning Tree (MST) algorithm, we extract the core inter-stock structure and identify central stocks through degree centrality. A dynamic portfolio is constructed using the top-ranked stocks, with capital allocated based on Value at Risk (VaR). To refine stock selection, we incorporate forecasts from ARIMA and Neural Network Autoregressive (NNAR) models. Trading simulations over a one-year period demonstrate that the MST-based strategies outperform a buy-and-hold benchmark, with the tuned NNAR-enhanced strategy achieving a 63.74% return versus 18.00% for the benchmark. Our results highlight the potential of combining network structures, predictive modeling, and risk metrics to improve adaptive financial decision-making.
- Abstract(参考訳): 本研究では,統計的ソーシャルネットワーク分析と時系列予測とリスク管理を統合したポートフォリオ最適化フレームワークを提案する。
S&P500(2020-2024)の毎日の株価データを用いて、Vector Autoregression(VAR)とForecast Error Variance Decomposition(FEVD)を介して依存ネットワークを構築し、影響関係をコストベースネットワークに変換する。
特に、FEVDは、VARの予測誤差のばらつきを分解し、各株価の衝撃が、我々のネットワークにおいて影響ベースのエッジ重みを形成するために反転する他の不確実性情報にどれだけ寄与するかを定量化する。
最小スパンニングツリー (MST) アルゴリズムを適用して, ストック間構造を抽出し, 集中度で中央ストックを同定する。
動的ポートフォリオは、リスク・アット・リスク(VaR)に基づいて資本が割り当てられたトップランクの株式を使用して構築される。
株式選択を改良するために、ARIMAとニューラルネットワーク自動回帰(NNAR)モデルからの予測を組み込んだ。
1年間のトレーディングシミュレーションは、MSTベースの戦略が買いと持ち株のベンチマークを上回っ、調整されたNNAR強化戦略が63.74%のリターンを達成したのに対して、18.00%のリターンを達成したことを示している。
本結果は,適応的な金融意思決定を改善するために,ネットワーク構造,予測モデル,リスク指標を組み合わせる可能性を強調した。
関連論文リスト
- Conditional Forecasting of Margin Calls using Dynamic Graph Neural Networks [0.0]
本稿では,時間的金融ネットワークにおける予測問題に先立って,条件付き$m$-stepを解くための新しい動的グラフニューラルネットワークアーキテクチャを提案する。
我々の研究は、ネットワークのダイナミクスをストレステストの実践にうまく組み込むことで、規制当局や政策立案者にシステム的リスク監視の重要なツールを提供することを実証している。
論文 参考訳(メタデータ) (2024-10-30T17:55:41Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
我々は、フェデレーション学習(FL)によるプライバシーを確保しつつ、サービスのデータ提供を容易にする没入型モデルトレーディングフレームワークを提案する。
我々は,資源制約下での高価値モデルに貢献するために,メタバースユーザ(MU)にインセンティブを与えるインセンティブ機構を設計する。
我々は、MUやその他のMSPに関するプライベート情報にアクセスすることなく、深層強化学習に基づく完全に分散された動的報酬アルゴリズムを開発する。
論文 参考訳(メタデータ) (2024-10-25T16:20:46Z) - GARCH-Informed Neural Networks for Volatility Prediction in Financial Markets [0.0]
マーケットのボラティリティを計測し、予測する新しいハイブリッドなDeep Learningモデルを提案する。
他の時系列モデルと比較すると、GINNは決定係数(R2$)、平均正方形誤差(MSE)、平均絶対誤差(MAE)の点で優れたサンプル外予測性能を示した。
論文 参考訳(メタデータ) (2024-09-30T23:53:54Z) - Application of Deep Learning for Factor Timing in Asset Management [21.212548040046133]
より柔軟なモデルは、目に見えない期間の係数プレミアムのばらつきを説明するのにより良いパフォーマンスを持つ。
ニューラルネットワークのような柔軟なモデルでは、予測に基づく最適な重み付けは不安定である傾向がある。
我々は、過去の最適再バランス方式によるリバランス頻度の傾きが、取引コストの削減に役立つことを検証した。
論文 参考訳(メタデータ) (2024-04-27T21:57:17Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated Learning(FL)は、エッジネットワークにおける分散デバイスの共同モデルトレーニングに基づく、プライバシ保護のための分散管理フレームワークである。
近年の研究では、FLは敵の例に弱いことが示されており、その性能は著しく低下している。
本研究では,対戦型訓練(AT)フレームワークを用いて,対戦型実例(AE)攻撃に対するFLモデルの堅牢性を向上させる。
論文 参考訳(メタデータ) (2024-03-05T09:18:29Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - $\clubsuit$ CLOVER $\clubsuit$: Probabilistic Forecasting with Coherent Learning Objective Reparameterization [42.215158938066054]
MQForecasterニューラルネットワークアーキテクチャを多変量ガウス因子モデルで拡張し,構築によるコヒーレンスを実現する。
我々はこの手法をCLOVER(Coherent Learning Objective Reparametrization Neural Network)と呼ぶ。
CLOVERは最先端のコヒーレント予測手法と比較して,スケールしたCRPS予測精度が15%向上した。
論文 参考訳(メタデータ) (2023-07-19T07:31:37Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Forecasting Financial Market Structure from Network Features using
Machine Learning [0.6999740786886535]
機械学習を用いて,リンク型およびノード型金融ネットワークの機能から市場相関構造を予測するモデルを提案する。
本稿では,3つの異なるネットワークフィルタリング手法を用いて市場構造,すなわち動的アセットグラフ(DAG),動的ミニマルスパンニングツリー(DMST),動的スレッショルドネットワーク(DTN)を推定する実験的なエビデンスを提案する。
実験結果から,提案モデルが予測性能の高い市場構造を予測できることを示す。
論文 参考訳(メタデータ) (2021-10-22T12:51:32Z) - WaveCorr: Correlation-savvy Deep Reinforcement Learning for Portfolio
Management [1.0499611180329804]
深層強化学習(DRL)のための新しいポートフォリオポリシーネットワークアーキテクチャを提案する。
WaveCorrは、年平均リターンで3%-25%改善した他のアーキテクチャを一貫して上回っている。
また,初期資産の順序と重みのランダムな選択による性能の安定度を最大5倍に改善した。
論文 参考訳(メタデータ) (2021-09-14T22:52:46Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Neural Networks and Value at Risk [59.85784504799224]
リスクしきい値推定における資産価値のモンテカルロシミュレーションを行う。
株式市場と長期債を試験資産として利用し、ニューラルネットワークについて検討する。
はるかに少ないデータでフィードされたネットワークは、大幅にパフォーマンスが悪くなっています。
論文 参考訳(メタデータ) (2020-05-04T17:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。