Feed-anywhere ANN (I) Steady Discrete $\to$ Diffusing on Graph Hidden States
- URL: http://arxiv.org/abs/2507.20088v1
- Date: Sun, 27 Jul 2025 00:35:15 GMT
- Title: Feed-anywhere ANN (I) Steady Discrete $\to$ Diffusing on Graph Hidden States
- Authors: Dmitry Pasechnyuk-Vilensky, Daniil Doroshenko,
- Abstract summary: We propose a novel framework for learning hidden graph structures from data using geometric analysis and nonlinear dynamics.<n>Our model achieves stronger bounds than standard neural networks, with complexity dependent on the data manifold's topology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel framework for learning hidden graph structures from data using geometric analysis and nonlinear dynamics. Our approach: (1) Defines discrete Sobolev spaces on graphs for scalar/vector fields, establishing key functional properties; (2) Introduces gauge-equivalent nonlinear Schr\"odinger and Landau--Lifshitz dynamics with provable stable stationary solutions smoothly dependent on input data and graph weights; (3) Develops a stochastic gradient algorithm over graph moduli spaces with sparsity regularization. Theoretically, we guarantee: topological correctness (homology recovery), metric convergence (Gromov--Hausdorff), and efficient search space utilization. Our dynamics-based model achieves stronger generalization bounds than standard neural networks, with complexity dependent on the data manifold's topology.
Related papers
- Adaptive Riemannian Graph Neural Networks [29.859977834688625]
We introduce a novel framework that learns a continuous and anisotropic metric tensor field over the graph.<n>It allows each node to determine its optimal local geometry, enabling the model to fluidly adapt to the graph's structural landscape.<n>Our method demonstrates superior performance on both homophilic and heterophilic benchmark geometries.
arXiv Detail & Related papers (2025-08-04T16:55:02Z) - LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - Improving embedding of graphs with missing data by soft manifolds [51.425411400683565]
The reliability of graph embeddings depends on how much the geometry of the continuous space matches the graph structure.
We introduce a new class of manifold, named soft manifold, that can solve this situation.
Using soft manifold for graph embedding, we can provide continuous spaces to pursue any task in data analysis over complex datasets.
arXiv Detail & Related papers (2023-11-29T12:48:33Z) - Supercharging Graph Transformers with Advective Diffusion [28.40109111316014]
This paper proposes Advective Diffusion Transformer (AdvDIFFormer), a physics-inspired graph Transformer model designed to address this challenge.<n>We show that AdvDIFFormer has provable capability for controlling generalization error with topological shifts.<n> Empirically, the model demonstrates superiority in various predictive tasks across information networks, molecular screening and protein interactions.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
We consider graphs as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius.
In a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius.
We develop methods to estimate the unknown sampling density in a self-supervised fashion.
arXiv Detail & Related papers (2022-10-15T08:01:08Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Learning to Learn Graph Topologies [27.782971146122218]
We learn a mapping from node data to the graph structure based on the idea of learning to optimise (L2O)
The model is trained in an end-to-end fashion with pairs of node data and graph samples.
Experiments on both synthetic and real-world data demonstrate that our model is more efficient than classic iterative algorithms in learning a graph with specific topological properties.
arXiv Detail & Related papers (2021-10-19T08:42:38Z) - Regularization of Mixture Models for Robust Principal Graph Learning [0.0]
A regularized version of Mixture Models is proposed to learn a principal graph from a distribution of $D$-dimensional data points.
Parameters of the model are iteratively estimated through an Expectation-Maximization procedure.
arXiv Detail & Related papers (2021-06-16T18:00:02Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
We learn dynamic graph representation in hyperbolic space, for the first time, which aims to infer node representations.
We present a novel Hyperbolic Variational Graph Network, referred to as HVGNN.
In particular, to model the dynamics, we introduce a Temporal GNN (TGNN) based on a theoretically grounded time encoding approach.
arXiv Detail & Related papers (2021-04-06T01:44:15Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.