Aggregation-aware MLP: An Unsupervised Approach for Graph Message-passing
- URL: http://arxiv.org/abs/2507.20127v1
- Date: Sun, 27 Jul 2025 04:52:55 GMT
- Title: Aggregation-aware MLP: An Unsupervised Approach for Graph Message-passing
- Authors: Xuanting Xie, Bingheng Li, Erlin Pan, Zhao Kang, Wenyu Chen,
- Abstract summary: "AMLP" is an unsupervised framework that shifts the paradigm from directly crafting aggregation functions to making adaptive aggregation.<n>Our approach consists of two key steps: First, we utilize a graph reconstruction that facilitates high-order grouping effects, and second, we employ a single-layer network to encode varying degrees of heterophily.
- Score: 10.93155007218297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have become a dominant approach to learning graph representations, primarily because of their message-passing mechanisms. However, GNNs typically adopt a fixed aggregator function such as Mean, Max, or Sum without principled reasoning behind the selection. This rigidity, especially in the presence of heterophily, often leads to poor, problem dependent performance. Although some attempts address this by designing more sophisticated aggregation functions, these methods tend to rely heavily on labeled data, which is often scarce in real-world tasks. In this work, we propose a novel unsupervised framework, "Aggregation-aware Multilayer Perceptron" (AMLP), which shifts the paradigm from directly crafting aggregation functions to making MLP adaptive to aggregation. Our lightweight approach consists of two key steps: First, we utilize a graph reconstruction method that facilitates high-order grouping effects, and second, we employ a single-layer network to encode varying degrees of heterophily, thereby improving the capacity and applicability of the model. Extensive experiments on node clustering and classification demonstrate the superior performance of AMLP, highlighting its potential for diverse graph learning scenarios.
Related papers
- Scalability Matters: Overcoming Challenges in InstructGLM with Similarity-Degree-Based Sampling [1.2805157669888096]
We propose SDM-InstructGLM, a novel instruction-tuned Graph Language Model (InstructGLM) framework that enhances scalability and efficiency without relying on GNNs.<n>Our method introduces a similarity-degree-based biased random walk mechanism, which selectively samples and encodes graph information based on node-feature similarity and degree centrality.<n>Our results demonstrate the feasibility of LLM-only graph processing, enabling scalable and interpretable Graph Language Models (GLMs) optimized through instruction-based fine-tuning.
arXiv Detail & Related papers (2025-05-02T06:08:21Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - How to Make LLMs Strong Node Classifiers? [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, such as Graph Neural Networks (GNNs) and Graph Transformers (GTs)<n>We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art (SOTA) GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Quantifying the Optimization and Generalization Advantages of Graph Neural Networks Over Multilayer Perceptrons [50.33260238739837]
Graph networks (GNNs) have demonstrated remarkable capabilities in learning from graph-structured data.<n>There remains a lack of analysis comparing GNNs and generalizations from an optimization and generalization perspective.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - Self-supervised Heterogeneous Graph Pre-training Based on Structural
Clustering [20.985559149384795]
We present SHGP, a novel Self-supervised Heterogeneous Graph Pre-training approach.
It does not need to generate any positive examples or negative examples.
It is superior to state-of-the-art unsupervised baselines and even semi-supervised baselines.
arXiv Detail & Related papers (2022-10-19T10:55:48Z) - Deep Attention-guided Graph Clustering with Dual Self-supervision [49.040136530379094]
We propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC)
We develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss.
Our method consistently outperforms state-of-the-art methods on six benchmark datasets.
arXiv Detail & Related papers (2021-11-10T06:53:03Z) - Meta-Aggregator: Learning to Aggregate for 1-bit Graph Neural Networks [127.32203532517953]
We develop a vanilla 1-bit framework that binarizes both the GNN parameters and the graph features.
Despite the lightweight architecture, we observed that this vanilla framework suffered from insufficient discriminative power in distinguishing graph topologies.
This discovery motivates us to devise meta aggregators to improve the expressive power of vanilla binarized GNNs.
arXiv Detail & Related papers (2021-09-27T08:50:37Z) - Graph-MLP: Node Classification without Message Passing in Graph [28.604893350871777]
Graph Neural Network (GNN) has been demonstrated its effectiveness in dealing with non-Euclidean structural data.
Recent works have mainly focused on powerful message passing modules, however, in this paper, we show that none of the message passing modules is necessary.
We propose a pure multilayer-perceptron-based framework, Graph-MLP with the supervision signal leveraging graph structure.
arXiv Detail & Related papers (2021-06-08T02:07:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.