Concept Learning for Cooperative Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2507.20143v1
- Date: Sun, 27 Jul 2025 06:22:24 GMT
- Title: Concept Learning for Cooperative Multi-Agent Reinforcement Learning
- Authors: Zhonghan Ge, Yuanyang Zhu, Chunlin Chen,
- Abstract summary: We study an interpretable value decomposition framework via concept bottleneck models.<n>We propose a novel value-based method, named Concepts learning for Multi-agent Q-learning.<n>We show CMQ achieves superior performance compared with the state-of-the-art counterparts.
- Score: 6.76324539337304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite substantial progress in applying neural networks (NN) to multi-agent reinforcement learning (MARL) areas, they still largely suffer from a lack of transparency and interoperability. However, its implicit cooperative mechanism is not yet fully understood due to black-box networks. In this work, we study an interpretable value decomposition framework via concept bottleneck models, which promote trustworthiness by conditioning credit assignment on an intermediate level of human-like cooperation concepts. To address this problem, we propose a novel value-based method, named Concepts learning for Multi-agent Q-learning (CMQ), that goes beyond the current performance-vs-interpretability trade-off by learning interpretable cooperation concepts. CMQ represents each cooperation concept as a supervised vector, as opposed to existing models where the information flowing through their end-to-end mechanism is concept-agnostic. Intuitively, using individual action value conditioning on global state embeddings to represent each concept allows for extra cooperation representation capacity. Empirical evaluations on the StarCraft II micromanagement challenge and level-based foraging (LBF) show that CMQ achieves superior performance compared with the state-of-the-art counterparts. The results also demonstrate that CMQ provides more cooperation concept representation capturing meaningful cooperation modes, and supports test-time concept interventions for detecting potential biases of cooperation mode and identifying spurious artifacts that impact cooperation.
Related papers
- Interpretable Hierarchical Concept Reasoning through Attention-Guided Graph Learning [8.464865102100925]
We propose Hierarchical Concept Memory Reasoner (H-CMR) to provide interpretability for both concept and task predictions.<n>H-CMR matches state-of-the-art performance while enabling strong human interaction through concept and model interventions.
arXiv Detail & Related papers (2025-06-26T08:56:55Z) - V-CEM: Bridging Performance and Intervenability in Concept-based Models [6.617167508694296]
Concept-based AI (C-XAI) is a rapidly growing research field that enhances AI model interpretability by leveraging intermediate, human-understandable concepts.<n>CBMs explicitly predict concepts before making final decisions, enabling interventions to correct misclassified concepts.<n>CBMs remain effective in Out-Of-Distribution (OOD) settings with intervention, but they struggle to match the performance of black-box models.<n>We propose the Variational Concept Embedding Model (V-CEM), which leverages variational inference to improve intervention responsiveness in CEMs.
arXiv Detail & Related papers (2025-04-04T22:43:04Z) - Concept Layers: Enhancing Interpretability and Intervenability via LLM Conceptualization [2.163881720692685]
We introduce a new methodology for incorporating interpretability and intervenability into an existing model by integrating Concept Layers into its architecture.<n>Our approach projects the model's internal vector representations into a conceptual, explainable vector space before reconstructing and feeding them back into the model.<n>We evaluate CLs across multiple tasks, demonstrating that they maintain the original model's performance and agreement while enabling meaningful interventions.
arXiv Detail & Related papers (2025-02-19T11:10:19Z) - EQ-CBM: A Probabilistic Concept Bottleneck with Energy-based Models and Quantized Vectors [4.481898130085069]
Concept bottleneck models (CBMs) have gained attention as an effective approach by leveraging human-understandable concepts to enhance interpretability.
Existing CBMs face challenges due to deterministic concept encoding and reliance on inconsistent concepts, leading to inaccuracies.
We propose EQ-CBM, a novel framework that enhances CBMs through probabilistic concept encoding.
arXiv Detail & Related papers (2024-09-22T23:43:45Z) - Scaling Large Language Model-based Multi-Agent Collaboration [72.8998796426346]
Recent breakthroughs in large language model-driven autonomous agents have revealed that multi-agent collaboration often surpasses each individual through collective reasoning.<n>This study explores whether the continuous addition of collaborative agents can yield similar benefits.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
We show that present SOTA concept learning approaches suffer from two major problems - lack of concept fidelity and limited concept interoperability.
We propose a novel self-explaining architecture for concept learning across domains.
We demonstrate the efficacy of our proposed approach over current SOTA concept learning approaches on four widely used real-world datasets.
arXiv Detail & Related papers (2024-05-01T06:50:18Z) - What Makes Good Collaborative Views? Contrastive Mutual Information Maximization for Multi-Agent Perception [52.41695608928129]
Multi-agent perception (MAP) allows autonomous systems to understand complex environments by interpreting data from multiple sources.
This paper investigates intermediate collaboration for MAP with a specific focus on exploring "good" properties of collaborative view.
We propose a novel framework named CMiMC for intermediate collaboration.
arXiv Detail & Related papers (2024-03-15T07:18:55Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Emergence of Theory of Mind Collaboration in Multiagent Systems [65.97255691640561]
We propose an adaptive training algorithm to develop effective collaboration between agents with ToM.
We evaluate our algorithms with two games, where our algorithm surpasses all previous decentralized execution algorithms without modeling ToM.
arXiv Detail & Related papers (2021-09-30T23:28:00Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.