EQ-CBM: A Probabilistic Concept Bottleneck with Energy-based Models and Quantized Vectors
- URL: http://arxiv.org/abs/2409.14630v1
- Date: Sun, 22 Sep 2024 23:43:45 GMT
- Title: EQ-CBM: A Probabilistic Concept Bottleneck with Energy-based Models and Quantized Vectors
- Authors: Sangwon Kim, Dasom Ahn, Byoung Chul Ko, In-su Jang, Kwang-Ju Kim,
- Abstract summary: Concept bottleneck models (CBMs) have gained attention as an effective approach by leveraging human-understandable concepts to enhance interpretability.
Existing CBMs face challenges due to deterministic concept encoding and reliance on inconsistent concepts, leading to inaccuracies.
We propose EQ-CBM, a novel framework that enhances CBMs through probabilistic concept encoding.
- Score: 4.481898130085069
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The demand for reliable AI systems has intensified the need for interpretable deep neural networks. Concept bottleneck models (CBMs) have gained attention as an effective approach by leveraging human-understandable concepts to enhance interpretability. However, existing CBMs face challenges due to deterministic concept encoding and reliance on inconsistent concepts, leading to inaccuracies. We propose EQ-CBM, a novel framework that enhances CBMs through probabilistic concept encoding using energy-based models (EBMs) with quantized concept activation vectors (qCAVs). EQ-CBM effectively captures uncertainties, thereby improving prediction reliability and accuracy. By employing qCAVs, our method selects homogeneous vectors during concept encoding, enabling more decisive task performance and facilitating higher levels of human intervention. Empirical results using benchmark datasets demonstrate that our approach outperforms the state-of-the-art in both concept and task accuracy.
Related papers
- Interpretable Concept-Based Memory Reasoning [12.562474638728194]
Concept-based Memory Reasoner (CMR) is a novel CBM designed to provide a human-understandable and provably-verifiable task prediction process.
CMR achieves better accuracy-interpretability trade-offs to state-of-the-art CBMs, discovers logic rules consistent with ground truths, allows for rule interventions, and allows pre-deployment verification.
arXiv Detail & Related papers (2024-07-22T10:32:48Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Stochastic Concept Bottleneck Models [8.391254800873599]
Concept Bottleneck Models (CBMs) have emerged as a promising interpretable method whose final prediction is based on human-understandable concepts.
We propose Concept Bottleneck Models (SCBMs), a novel approach that models concept dependencies.
A single-concept intervention affects all correlated concepts, thereby improving intervention effectiveness.
arXiv Detail & Related papers (2024-06-27T15:38:37Z) - Evidential Concept Embedding Models: Towards Reliable Concept Explanations for Skin Disease Diagnosis [24.946148305384202]
Concept Bottleneck Models (CBM) have emerged as an active interpretable framework incorporating human-interpretable concepts into decision-making.
We propose an evidential Concept Embedding Model (evi-CEM) which employs evidential learning to model the concept uncertainty.
Our evaluation demonstrates that evi-CEM achieves superior performance in terms of concept prediction.
arXiv Detail & Related papers (2024-06-27T12:29:50Z) - Improving Intervention Efficacy via Concept Realignment in Concept Bottleneck Models [57.86303579812877]
Concept Bottleneck Models (CBMs) ground image classification on human-understandable concepts to allow for interpretable model decisions.
Existing approaches often require numerous human interventions per image to achieve strong performances.
We introduce a trainable concept realignment intervention module, which leverages concept relations to realign concept assignments post-intervention.
arXiv Detail & Related papers (2024-05-02T17:59:01Z) - Incremental Residual Concept Bottleneck Models [29.388549499546556]
Concept Bottleneck Models (CBMs) map the black-box visual representations extracted by deep neural networks onto a set of interpretable concepts.
We propose the Incremental Residual Concept Bottleneck Model (Res-CBM) to address the challenge of concept completeness.
Our approach can be applied to any user-defined concept bank, as a post-hoc processing method to enhance the performance of any CBMs.
arXiv Detail & Related papers (2024-04-13T12:02:19Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - I saw, I conceived, I concluded: Progressive Concepts as Bottlenecks [2.9398911304923447]
Concept bottleneck models (CBMs) provide explainability and intervention during inference by correcting predicted, intermediate concepts.
This makes CBMs attractive for high-stakes decision-making.
We take the quality assessment of fetal ultrasound scans as a real-life use case for CBM decision support in healthcare.
arXiv Detail & Related papers (2022-11-19T09:31:19Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - A Unified Contrastive Energy-based Model for Understanding the
Generative Ability of Adversarial Training [64.71254710803368]
Adversarial Training (AT) is an effective approach to enhance the robustness of deep neural networks.
We demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM)
We propose a principled method to develop adversarial learning and sampling methods.
arXiv Detail & Related papers (2022-03-25T05:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.