MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
- URL: http://arxiv.org/abs/2507.20254v1
- Date: Sun, 27 Jul 2025 12:54:42 GMT
- Title: MIRepNet: A Pipeline and Foundation Model for EEG-Based Motor Imagery Classification
- Authors: Dingkun Liu, Zhu Chen, Jingwei Luo, Shijie Lian, Dongrui Wu,
- Abstract summary: Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices.<n>Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms.<n>This paper proposes MIRepNet, the first EEG foundation model tailored for the motor imagery paradigm.
- Score: 12.648298676665886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. Recent EEG foundation models aim to learn generalized representations across diverse BCI paradigms. However, these approaches overlook fundamental paradigm-specific neurophysiological distinctions, limiting their generalization ability. Importantly, in practical BCI deployments, the specific paradigm such as motor imagery (MI) for stroke rehabilitation or assistive robotics, is generally determined prior to data acquisition. This paper proposes MIRepNet, the first EEG foundation model tailored for the MI paradigm. MIRepNet comprises a high-quality EEG preprocessing pipeline incorporating a neurophysiologically-informed channel template, adaptable to EEG headsets with arbitrary electrode configurations. Furthermore, we introduce a hybrid pretraining strategy that combines self-supervised masked token reconstruction and supervised MI classification, facilitating rapid adaptation and accurate decoding on novel downstream MI tasks with fewer than 30 trials per class. Extensive evaluations across five public MI datasets demonstrated that MIRepNet consistently achieved state-of-the-art performance, significantly outperforming both specialized and generalized EEG models. Our code will be available on GitHub\footnote{https://github.com/staraink/MIRepNet}.
Related papers
- BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [50.76802709706976]
This paper proposes Brain Omni, the first brain foundation model that generalises across heterogeneous EEG and MEG recordings.<n>To unify diverse data sources, we introduce BrainTokenizer, the first tokenizer that quantises neural brain activity into discrete representations.<n>A total of 1,997 hours of EEG and 656 hours of MEG data are curated and standardised from publicly available sources for pretraining.
arXiv Detail & Related papers (2025-05-18T14:07:14Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)<n>Our tokenization scheme represents EEG signals at a per-channel patch.<n>We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.<n>Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.<n>The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification [11.687193535939798]
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices.
Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.
This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations.
arXiv Detail & Related papers (2024-04-23T09:51:24Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - ConTraNet: A single end-to-end hybrid network for EEG-based and
EMG-based human machine interfaces [0.0]
We introduce a single hybrid model called ConTraNet, which is based on CNN and Transformer architectures.
ConTraNet is robust to learn distinct features from different HMI paradigms and generalizes well as compared to the current state of the art algorithms.
arXiv Detail & Related papers (2022-06-21T18:55:50Z) - Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor
Imagery Classification [14.95694356964053]
We propose a geometric deep learning framework calledCSPNet to characterize EEG signals on symmetric positive definite (SPD)
CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios of two MI-EEG datasets.
arXiv Detail & Related papers (2022-02-05T02:52:23Z) - CNN-based Approaches For Cross-Subject Classification in Motor Imagery:
From The State-of-The-Art to DynamicNet [0.2936007114555107]
Motor imagery (MI)-based brain-computer interface (BCI) systems are being increasingly employed to provide alternative means of communication and control.
accurately classifying MI from brain signals is essential to obtain reliable BCI systems.
Deep learning approaches have started to emerge as valid alternatives to standard machine learning techniques.
arXiv Detail & Related papers (2021-05-17T14:57:13Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Motor Imagery Classification of Single-Arm Tasks Using Convolutional
Neural Network based on Feature Refining [5.620334754517149]
Motor imagery (MI) is commonly used for recovery or rehabilitation of motor functions due to its signal origin.
In this study, we proposed a band-power feature refining convolutional neural network (BFR-CNN) to achieve high classification accuracy.
arXiv Detail & Related papers (2020-02-04T04:36:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.