Approximating Full Conformal Prediction for Neural Network Regression with Gauss-Newton Influence
- URL: http://arxiv.org/abs/2507.20272v1
- Date: Sun, 27 Jul 2025 13:34:32 GMT
- Title: Approximating Full Conformal Prediction for Neural Network Regression with Gauss-Newton Influence
- Authors: Dharmesh Tailor, Alvaro H. C. Correia, Eric Nalisnick, Christos Louizos,
- Abstract summary: We construct prediction intervals for neural network regressors post-hoc without held-out data.<n>We train just once and locally perturb model parameters using Gauss-Newton influence.
- Score: 8.952347049759094
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification is an important prerequisite for the deployment of deep learning models in safety-critical areas. Yet, this hinges on the uncertainty estimates being useful to the extent the prediction intervals are well-calibrated and sharp. In the absence of inherent uncertainty estimates (e.g. pretrained models predicting only point estimates), popular approaches that operate post-hoc include Laplace's method and split conformal prediction (split-CP). However, Laplace's method can be miscalibrated when the model is misspecified and split-CP requires sample splitting, and thus comes at the expense of statistical efficiency. In this work, we construct prediction intervals for neural network regressors post-hoc without held-out data. This is achieved by approximating the full conformal prediction method (full-CP). Whilst full-CP nominally requires retraining the model for every test point and candidate label, we propose to train just once and locally perturb model parameters using Gauss-Newton influence to approximate the effect of retraining. Coupled with linearization of the network, we express the absolute residual nonconformity score as a piecewise linear function of the candidate label allowing for an efficient procedure that avoids the exhaustive search over the output space. On standard regression benchmarks and bounding box localization, we show the resulting prediction intervals are locally-adaptive and often tighter than those of split-CP.
Related papers
- Deep Limit Model-free Prediction in Regression [0.0]
We provide a Model-free approach based on Deep Neural Network (DNN) to accomplish point prediction and prediction interval under a general regression setting.
Our method is more stable and accurate compared to other DNN-based counterparts, especially for optimal point predictions.
arXiv Detail & Related papers (2024-08-18T16:37:53Z) - Normalizing Flows for Conformal Regression [0.0]
Conformal Prediction (CP) algorithms estimate the uncertainty of a prediction model by calibrating its outputs on labeled data.
We present a general scheme to localize the intervals by training the calibration process.
Unlike the Error Reweighting CP algorithm of Papadopoulos et al. (2008), the framework allows estimating the gap between nominal and empirical conditional validity.
arXiv Detail & Related papers (2024-06-05T15:04:28Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.<n>We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.<n>We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Domain-adaptive and Subgroup-specific Cascaded Temperature Regression
for Out-of-distribution Calibration [16.930766717110053]
We propose a novel meta-set-based cascaded temperature regression method for post-hoc calibration.
We partition each meta-set into subgroups based on predicted category and confidence level, capturing diverse uncertainties.
A regression network is then trained to derive category-specific and confidence-level-specific scaling, achieving calibration across meta-sets.
arXiv Detail & Related papers (2024-02-14T14:35:57Z) - Regression Trees for Fast and Adaptive Prediction Intervals [2.6763498831034043]
We present a family of methods to calibrate prediction intervals for regression problems with local coverage guarantees.
We create a partition by training regression trees and Random Forests on conformity scores.
Our proposal is versatile, as it applies to various conformity scores and prediction settings.
arXiv Detail & Related papers (2024-02-12T01:17:09Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Improved uncertainty quantification for neural networks with Bayesian
last layer [0.0]
Uncertainty quantification is an important task in machine learning.
We present a reformulation of the log-marginal likelihood of a NN with BLL which allows for efficient training using backpropagation.
arXiv Detail & Related papers (2023-02-21T20:23:56Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.