A Comparative Study of OpenMP Scheduling Algorithm Selection Strategies
- URL: http://arxiv.org/abs/2507.20312v1
- Date: Sun, 27 Jul 2025 15:10:30 GMT
- Title: A Comparative Study of OpenMP Scheduling Algorithm Selection Strategies
- Authors: Jonas H. Müller Korndörfer, Ali Mohammed, Ahmed Eleliemy, Quentin Guilloteau, Reto Krummenacher, Florina M. Ciorba,
- Abstract summary: We propose and evaluate learning-based approaches for selecting scheduling algorithms in OpenMP.<n>Our results show that RL methods are capable of learning high-performing scheduling decisions.<n>The approach can also be extended to MPI-based programs, enabling optimization of scheduling decisions across multiple levels of parallelism.
- Score: 4.068270792140994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific and data science applications are becoming increasingly complex, with growing computational and memory demands. Modern high performance computing (HPC) systems provide high parallelism and heterogeneity across nodes, devices, and cores. To achieve good performance, effective scheduling and load balancing techniques are essential. Parallel programming frameworks such as OpenMP now offer a variety of advanced scheduling algorithms to support diverse applications and platforms. This creates an instance of the scheduling algorithm selection problem, which involves identifying the most suitable algorithm for a given combination of workload and system characteristics. In this work, we explore learning-based approaches for selecting scheduling algorithms in OpenMP. We propose and evaluate expert-based and reinforcement learning (RL)-based methods, and conduct a detailed performance analysis across six applications and three systems. Our results show that RL methods are capable of learning high-performing scheduling decisions, although they require significant exploration, with the choice of reward function playing a key role. Expert-based methods, in contrast, rely on prior knowledge and involve less exploration, though they may not always identify the optimal algorithm for a specific application-system pair. By combining expert knowledge with RL-based learning, we achieve improved performance and greater adaptability. Overall, this work demonstrates that dynamic selection of scheduling algorithms during execution is both viable and beneficial for OpenMP applications. The approach can also be extended to MPI-based programs, enabling optimization of scheduling decisions across multiple levels of parallelism.
Related papers
- How Should We Meta-Learn Reinforcement Learning Algorithms? [74.37180723338591]
We carry out an empirical comparison of the different approaches when applied to a range of meta-learned algorithms.<n>In addition to meta-train and meta-test performance, we also investigate factors including the interpretability, sample cost and train time.<n>We propose several guidelines for meta-learning new RL algorithms which will help ensure that future learned algorithms are as performant as possible.
arXiv Detail & Related papers (2025-07-23T16:31:38Z) - Decentralized Distributed Proximal Policy Optimization (DD-PPO) for High Performance Computing Scheduling on Multi-User Systems [45.62643537023675]
This study introduces a novel RL-based scheduler utilizing the Decentralized Distributed Proximal Policy Optimization (DD-PPO) algorithm.<n>The DD-PPO algorithm supports large-scale distributed training across multiple workers without requiring parameter synchronization at every step.<n>The validation dataset leveraged over 11.5 million real HPC job traces for comparing DD-PPO performance between traditional and advanced scheduling approaches.
arXiv Detail & Related papers (2025-05-06T19:50:37Z) - A Survey on Inference Optimization Techniques for Mixture of Experts Models [50.40325411764262]
Large-scale Mixture of Experts (MoE) models offer enhanced model capacity and computational efficiency through conditional computation.<n> deploying and running inference on these models presents significant challenges in computational resources, latency, and energy efficiency.<n>This survey analyzes optimization techniques for MoE models across the entire system stack.
arXiv Detail & Related papers (2024-12-18T14:11:15Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Accelerating Exact Combinatorial Optimization via RL-based
Initialization -- A Case Study in Scheduling [1.3053649021965603]
This research aims to develop an innovative approach that employs machine learning (ML) for addressing optimization problems.
We introduce a novel two-phase RL-to-ILP scheduling framework, which includes three steps: 1) solver as coarse-grain scheduler, 2) solution relaxation and 3) exact solving via ILP.
Our framework demonstrates the same scheduling performance compared with using exact scheduling methods while achieving up to 128 $times$ speed improvements.
arXiv Detail & Related papers (2023-08-19T15:52:43Z) - Deep reinforcement learning applied to an assembly sequence planning
problem with user preferences [1.0558951653323283]
We propose an approach to the implementation of DRL methods in assembly sequence planning problems.
The proposed approach introduces in the RL environment parametric actions to improve training time and sample efficiency.
The results support the potential for the application of deep reinforcement learning in assembly sequence planning problems with human interaction.
arXiv Detail & Related papers (2023-04-13T14:25:15Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
A reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions.
The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams.
arXiv Detail & Related papers (2023-04-08T14:32:12Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Geometric Deep Reinforcement Learning for Dynamic DAG Scheduling [8.14784681248878]
In this paper, we propose a reinforcement learning approach to solve a realistic scheduling problem.
We apply it to an algorithm commonly executed in the high performance computing community, the Cholesky factorization.
Our algorithm uses graph neural networks in combination with an actor-critic algorithm (A2C) to build an adaptive representation of the problem on the fly.
arXiv Detail & Related papers (2020-11-09T10:57:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.