PIVOTS: Aligning unseen Structures using Preoperative to Intraoperative Volume-To-Surface Registration for Liver Navigation
- URL: http://arxiv.org/abs/2507.20337v1
- Date: Sun, 27 Jul 2025 16:01:26 GMT
- Title: PIVOTS: Aligning unseen Structures using Preoperative to Intraoperative Volume-To-Surface Registration for Liver Navigation
- Authors: Peng Liu, Bianca Güttner, Yutong Su, Chenyang Li, Jinjing Xu, Mingyang Liu, Zhe Min, Andrey Zhylka, Jasper Smit, Karin Olthof, Matteo Fusaglia, Rudi Apolle, Matthias Miederer, Laura Frohneberger, Carina Riediger, Jügen Weitz, Fiona Kolbinger, Stefanie Speidel, Micha Pfeiffer,
- Abstract summary: PIVOTS is a neural network that takes point clouds as input for deformation prediction.<n>We train the neural network on synthetic data simulated from a biomechanical simulation pipeline.<n>Results demonstrate superior registration performance compared to baseline methods.
- Score: 11.658316634846697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Non-rigid registration is essential for Augmented Reality guided laparoscopic liver surgery by fusing preoperative information, such as tumor location and vascular structures, into the limited intraoperative view, thereby enhancing surgical navigation. A prerequisite is the accurate prediction of intraoperative liver deformation which remains highly challenging due to factors such as large deformation caused by pneumoperitoneum, respiration and tool interaction as well as noisy intraoperative data, and limited field of view due to occlusion and constrained camera movement. To address these challenges, we introduce PIVOTS, a Preoperative to Intraoperative VOlume-To-Surface registration neural network that directly takes point clouds as input for deformation prediction. The geometric feature extraction encoder allows multi-resolution feature extraction, and the decoder, comprising novel deformation aware cross attention modules, enables pre- and intraoperative information interaction and accurate multi-level displacement prediction. We train the neural network on synthetic data simulated from a biomechanical simulation pipeline and validate its performance on both synthetic and real datasets. Results demonstrate superior registration performance of our method compared to baseline methods, exhibiting strong robustness against high amounts of noise, large deformation, and various levels of intraoperative visibility. We publish the training and test sets as evaluation benchmarks and call for a fair comparison of liver registration methods with volume-to-surface data. Code and datasets are available here https://github.com/pengliu-nct/PIVOTS.
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - Toward Reliable AR-Guided Surgical Navigation: Interactive Deformation Modeling with Data-Driven Biomechanics and Prompts [21.952265898720825]
We propose a data-driven algorithm that preserves FEM-level accuracy while improving computational efficiency.<n>We introduce a novel human-in-the-loop mechanism into the deformation modeling process.<n>Our algorithm achieves a mean target registration error of 3.42 mm, surpassing state-of-the-art methods in volumetric accuracy.
arXiv Detail & Related papers (2025-06-08T14:19:54Z) - Landmark-Free Preoperative-to-Intraoperative Registration in Laparoscopic Liver Resection [50.388465935739376]
Liver registration by overlaying preoperative 3D models onto intraoperative 2D frames can assist surgeons in perceiving the spatial anatomy of the liver clearly for a higher surgical success rate.<n>Existing registration methods rely heavily on anatomical landmark-based, which encounter two major limitations.<n>We propose a landmark-free preoperative-to-intraoperative registration framework utilizing effective self-supervised learning.
arXiv Detail & Related papers (2025-04-21T14:55:57Z) - Neuro-TransUNet: Segmentation of stroke lesion in MRI using transformers [0.6554326244334866]
This study introduces the Neuro-TransUNet framework, which synergizes the U-Net's spatial feature extraction with SwinUNETR's global contextual processing ability.
The proposed Neuro-TransUNet model, trained with the ATLAS v2.0 emphtraining dataset, outperforms existing deep learning algorithms and establishes a new benchmark in stroke lesion segmentation.
arXiv Detail & Related papers (2024-06-10T04:36:21Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Hypergraph-Transformer (HGT) for Interactive Event Prediction in Laparoscopic and Robotic Surgery [47.47211257890948]
We propose a predictive neural network that is capable of understanding and predicting critical interactive aspects of surgical workflow from intra-abdominal video.<n>We verify our approach on established surgical datasets and applications, including the detection and prediction of action triplets.<n>Our results demonstrate the superiority of our approach compared to unstructured alternatives.
arXiv Detail & Related papers (2024-02-03T00:58:05Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - SuPerPM: A Large Deformation-Robust Surgical Perception Framework Based on Deep Point Matching Learned from Physical Constrained Simulation Data [28.314243346768112]
We present a surgical perception framework, SuPerPM, that leverages learning-based non-rigid point cloud matching for data association.
The proposed framework is demonstrated on several challenging surgical datasets that are characterized by large deformations.
arXiv Detail & Related papers (2023-09-25T04:27:06Z) - Cross-Dataset Adaptation for Instrument Classification in Cataract
Surgery Videos [54.1843419649895]
State-of-the-art models, which perform this task well on a particular dataset, perform poorly when tested on another dataset.
We propose a novel end-to-end Unsupervised Domain Adaptation (UDA) method called the Barlow Adaptor.
In addition, we introduce a novel loss called the Barlow Feature Alignment Loss (BFAL) which aligns features across different domains.
arXiv Detail & Related papers (2023-07-31T18:14:18Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Non-Rigid Volume to Surface Registration using a Data-Driven
Biomechanical Model [0.028144129864580446]
We train a convolutional neural network to perform both the search for surface correspondences and the non-rigid registration in one step.
The network is trained on physically accurate biomechanical simulations of randomly generated, deforming organ-like structures.
We show that the network translates well to real data while maintaining a high inference speed.
arXiv Detail & Related papers (2020-05-29T17:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.