From Observations to Causations: A GNN-based Probabilistic Prediction Framework for Causal Discovery
- URL: http://arxiv.org/abs/2507.20349v1
- Date: Sun, 27 Jul 2025 16:36:45 GMT
- Title: From Observations to Causations: A GNN-based Probabilistic Prediction Framework for Causal Discovery
- Authors: Rezaur Rashid, Gabriel Terejanu,
- Abstract summary: We introduce a novel graph neural network (GNN)-based probabilistic framework that learns a probability distribution over the entire space of causal graphs.<n>Our framework leverages a GNN that encodes both node and edge attributes into a unified graph representation, enabling the model to learn complex causal structures directly from data.
- Score: 0.7366405857677226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery from observational data is challenging, especially with large datasets and complex relationships. Traditional methods often struggle with scalability and capturing global structural information. To overcome these limitations, we introduce a novel graph neural network (GNN)-based probabilistic framework that learns a probability distribution over the entire space of causal graphs, unlike methods that output a single deterministic graph. Our framework leverages a GNN that encodes both node and edge attributes into a unified graph representation, enabling the model to learn complex causal structures directly from data. The GNN model is trained on a diverse set of synthetic datasets augmented with statistical and information-theoretic measures, such as mutual information and conditional entropy, capturing both local and global data properties. We frame causal discovery as a supervised learning problem, directly predicting the entire graph structure. Our approach demonstrates superior performance, outperforming both traditional and recent non-GNN-based methods, as well as a GNN-based approach, in terms of accuracy and scalability on synthetic and real-world datasets without further training. This probabilistic framework significantly improves causal structure learning, with broad implications for decision-making and scientific discovery across various fields.
Related papers
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - Rethinking Causal Relationships Learning in Graph Neural Networks [24.7962807148905]
We introduce a lightweight and adaptable GNN module designed to strengthen GNNs' causal learning capabilities.
We empirically validate the effectiveness of the proposed module.
arXiv Detail & Related papers (2023-12-15T08:54:32Z) - Addressing the Impact of Localized Training Data in Graph Neural
Networks [0.0]
Graph Neural Networks (GNNs) have achieved notable success in learning from graph-structured data.
This article aims to assess the impact of training GNNs on localized subsets of the graph.
We propose a regularization method to minimize distributional discrepancies between localized training data and graph inference.
arXiv Detail & Related papers (2023-07-24T11:04:22Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
We develop a principled approach to the problem of graph learning with weak information (GLWI)
We propose D$2$PT, a dual-channel GNN framework that performs long-range information propagation on the input graph with incomplete structure, but also on a global graph that encodes global semantic similarities.
arXiv Detail & Related papers (2023-05-29T04:51:09Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Crime Prediction with Graph Neural Networks and Multivariate Normal
Distributions [18.640610803366876]
We tackle the sparsity problem in high resolution by leveraging the flexible structure of graph convolutional networks (GCNs)
We build our model with Graph Convolutional Gated Recurrent Units (Graph-ConvGRU) to learn spatial, temporal, and categorical relations.
We show that our model is not only generative but also precise.
arXiv Detail & Related papers (2021-11-29T17:37:01Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Generalization of graph network inferences in higher-order graphical
models [5.33024001730262]
Probabilistic graphical models provide a powerful tool to describe complex statistical structure.
inferences such as marginalization are intractable for general graphs.
We define the Recurrent Factor Graph Neural Network (RF-GNN) to achieve fast approximate inference on graphical models that involve many-variable interactions.
arXiv Detail & Related papers (2021-07-12T20:51:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.