論文の概要: Fusing CFD and measurement data using transfer learning
- arxiv url: http://arxiv.org/abs/2507.20576v1
- Date: Mon, 28 Jul 2025 07:21:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:57.963043
- Title: Fusing CFD and measurement data using transfer learning
- Title(参考訳): 伝達学習を用いたCFDと測定データの融合
- Authors: Alexander Barklage, Philipp Bekemeyer,
- Abstract要約: 本稿では,伝送学習によるシミュレーションと計測データを組み合わせたニューラルネットワークに基づく非線形手法を提案する。
最初のステップでは、ニューラルネットワークがシミュレーションデータに基づいてトレーニングされ、分散量の空間的特徴を学習する。
第2のステップは、ニューラルネットワークモデル全体の小さなサブセットを再トレーニングするだけで、シミュレーションと測定の間の体系的なエラーを修正するために、測定データ上での変換学習である。
- 参考スコア(独自算出の注目度): 49.1574468325115
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Aerodynamic analysis during aircraft design usually involves methods of varying accuracy and spatial resolution, which all have their advantages and disadvantages. It is therefore desirable to create data-driven models which effectively combine these advantages. Such data fusion methods for distributed quantities mainly rely on proper orthogonal decomposition as of now, which is a linear method. In this paper, we introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning. The network training accounts for the heterogeneity of the data, as simulation data usually features a high spatial resolution, while measurement data is sparse but more accurate. In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities. The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model. This approach is applied to a multilayer perceptron architecture and shows significant improvements over the established method based on proper orthogonal decomposition by producing more physical solutions near nonlinearities. In addition, the neural network provides solutions at arbitrary flow conditions, thus making the model useful for flight mechanical design, structural sizing, and certification. As the proposed training strategy is very general, it can also be applied to more complex neural network architectures in the future.
- Abstract(参考訳): 航空機設計における空力解析は、通常、様々な精度と空間分解能の手法が伴うが、いずれも利点と欠点がある。
したがって、これらの利点を効果的に組み合わせたデータ駆動モデルを作成することが望ましい。
分散量に対するこのようなデータ融合法は、現在は線形法である適切な直交分解に依存している。
本稿では,伝送学習によるシミュレーションと計測データを組み合わせたニューラルネットワークに基づく非線形手法を提案する。
シミュレーションデータは通常、空間分解能が高く、測定データは希少だがより正確である。
最初のステップでは、ニューラルネットワークがシミュレーションデータに基づいてトレーニングされ、分散量の空間的特徴を学習する。
第2のステップは、ニューラルネットワークモデル全体の小さなサブセットを再トレーニングするだけで、シミュレーションと測定の間の体系的なエラーを修正するために、測定データ上での学習を転送することである。
このアプローチは多層パーセプトロンアーキテクチャに適用され、非線形に近いより物理的解を生成することにより、適切な直交分解に基づく確立された手法よりも大幅に改善されている。
さらに、ニューラルネットワークは任意のフロー条件でソリューションを提供するため、このモデルは飛行機械設計、構造サイズ、認証に有用である。
提案されたトレーニング戦略は非常に一般的であるため、将来的にはより複雑なニューラルネットワークアーキテクチャにも適用できる。
関連論文リスト
- Private Training & Data Generation by Clustering Embeddings [74.00687214400021]
差分プライバシー(DP)は、個々のデータを保護するための堅牢なフレームワークを提供する。
本稿では,DP合成画像埋め込み生成のための新しい原理的手法を提案する。
経験的に、合成的に生成された埋め込みに基づいて訓練された単純な2層ニューラルネットワークは、最先端(SOTA)分類の精度を達成する。
論文 参考訳(メタデータ) (2025-06-20T00:17:14Z) - Mean flow data assimilation using physics-constrained Graph Neural Networks [0.0]
本研究では,グラフニューラルネットワーク(GNN)と最適化手法を統合し,平均流路復元の精度を高める新しいデータ同化手法を提案する。
GNNフレームワークは非構造化データを扱うのに適しており、計算流体力学(CFD)で遭遇する複雑な測地に共通している。
その結果,データ駆動モデルに類似するモデルと比較して,訓練データに制限がある場合でも,平均フロー再構成の精度は著しく向上した。
論文 参考訳(メタデータ) (2024-11-14T14:31:52Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Iterative self-transfer learning: A general methodology for response
time-history prediction based on small dataset [0.0]
本研究では,小さなデータセットに基づいてニューラルネットワークを学習するための反復的自己伝達学習手法を提案する。
提案手法は,小さなデータセットに対して,ほぼ一桁の精度でモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T18:48:04Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Learning Similarity Metrics for Volumetric Simulations with Multiscale
CNNs [25.253880881581956]
本研究では,エントロピーに基づく類似性モデルを提案する。
我々は数値PDEソルバと既存のシミュレーションデータリポジトリからフィールドのコレクションを作成する。
ボリューム類似度メトリック(VolSiM)を演算するマルチスケールCNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-08T19:19:08Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
本研究では,線形および非線形な多自由度系の力学を学習できる物理に基づくリカレントニューラルネットワークモデルを提案する。
このモデルは、変位、速度、加速度、内部力を含む完全な応答のセットを推定することができる。
論文 参考訳(メタデータ) (2020-07-03T17:05:35Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。