論文の概要: Mean flow data assimilation using physics-constrained Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2411.09476v3
- Date: Fri, 25 Jul 2025 09:18:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-28 18:17:32.710349
- Title: Mean flow data assimilation using physics-constrained Graph Neural Networks
- Title(参考訳): 物理制約付きグラフニューラルネットワークを用いた平均フローデータ同化
- Authors: M. Quattromini, M. A. Bucci, S. Cherubini, O. Semeraro,
- Abstract要約: 本研究では,グラフニューラルネットワーク(GNN)と最適化手法を統合し,平均流路復元の精度を高める新しいデータ同化手法を提案する。
GNNフレームワークは非構造化データを扱うのに適しており、計算流体力学(CFD)で遭遇する複雑な測地に共通している。
その結果,データ駆動モデルに類似するモデルと比較して,訓練データに制限がある場合でも,平均フロー再構成の精度は著しく向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their widespread use, purely data-driven methods often suffer from overfitting, lack of physical consistency, and high data dependency, particularly when physical constraints are not incorporated. This study introduces a novel data assimilation approach that integrates Graph Neural Networks (GNNs) with optimisation techniques to enhance the accuracy of mean flow reconstruction, using Reynolds-Averaged Navier-Stokes (RANS) equations as a baseline. The method leverages the adjoint approach, incorporating RANS-derived gradients as optimisation terms during GNN training, ensuring that the learned model adheres to physical laws and maintains consistency. Additionally, the GNN framework is well-suited for handling unstructured data, which is common in the complex geometries encountered in Computational Fluid Dynamics (CFD). The GNN is interfaced with the Finite Element Method (FEM) for numerical simulations, enabling accurate modelling in unstructured domains. We consider the reconstruction of mean flow past bluff bodies at low Reynolds numbers as a test case, addressing tasks such as sparse data recovery, denoising, and inpainting of missing flow data. The key strengths of the approach lie in its integration of physical constraints into the GNN training process, leading to accurate predictions with limited data, making it particularly valuable when data are scarce or corrupted. Results demonstrate significant improvements in the accuracy of mean flow reconstructions, even with limited training data, compared to analogous purely data-driven models.
- Abstract(参考訳): 広く使われているにもかかわらず、純粋にデータ駆動型メソッドは、特に物理的制約が組み込まれていない場合、オーバーフィット、物理的一貫性の欠如、高いデータ依存に悩まされることが多い。
本研究では,グラフニューラルネットワーク(GNN)と平均流路復元の精度を高める最適化手法を統合した新しいデータ同化手法について,Reynolds-Averaged Navier-Stokes (RANS) 方程式をベースラインとして紹介する。
この手法は、GNNトレーニング中にRANS由来の勾配を最適化用語として組み込むことで、学習されたモデルが物理法則に従属し、一貫性を維持することを保証する。
さらに、GNNフレームワークは非構造化データを扱うのに適しており、計算流体力学(CFD)で遭遇する複雑なジオメトリに共通している。
GNNは数値シミュレーションのための有限要素法(FEM)とインタフェースがあり、非構造領域での正確なモデリングを可能にする。
我々は,低レイノルズ数におけるブラフ体を過ぎる平均流路の再構築をテストケースとみなし,スパースデータリカバリ,デノナイジング,欠落したフローデータのインパインティングといった課題に対処する。
このアプローチの主な強みは、GNNトレーニングプロセスに物理的な制約を統合することにある。
その結果,データ駆動モデルに類似するモデルと比較して,訓練データに制限がある場合でも,平均フロー再構成の精度は著しく向上した。
関連論文リスト
- Physically Interpretable Representation and Controlled Generation for Turbulence Data [39.42376941186934]
本稿では,高次元科学的データを低次元,物理的に意味のある表現に符号化するデータ駆動型手法を提案する。
レイノルズ数の範囲を越えるシリンダーを過ぎる流れの2次元ナビエ・ストークスシミュレーションを用いて,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2025-01-31T17:51:14Z) - A Multi-Fidelity Graph U-Net Model for Accelerated Physics Simulations [1.2430809884830318]
本稿では,GNNモデルの性能向上のための多元性手法の利点を生かした,新しいGNNアーキテクチャであるMulti-Fidelity U-Netを提案する。
提案手法は精度とデータ要求において有意に優れた性能を示すことを示す。
また,提案アーキテクチャの高速バージョンであるMulti-Fidelity U-Net Liteを35%高速化し,精度を2~5%削減した。
論文 参考訳(メタデータ) (2024-12-19T20:09:38Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
我々は,PE-GNN,Quantile Neural Networks,および再校正技術を完全非パラメトリックフレームワークに統合する新しい手法である,位置グラフ量子ニューラルネットワーク(PE-GQNN)を紹介する。
ベンチマークデータセットの実験では、PE-GQNNは予測精度と不確実性の定量化の両方で既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - Hierarchically Disentangled Recurrent Network for Factorizing System Dynamics of Multi-scale Systems [4.634606500665259]
マルチスケールプロセスのモデリングのための知識誘導機械学習(KGML)フレームワークを提案する。
本研究では,水文学における流れ予測の文脈におけるその性能について検討する。
論文 参考訳(メタデータ) (2024-07-29T16:25:43Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
グラフニューラルネットワークは、様々なアプリケーションにまたがる強力なパフォーマンスで認識されている。
BPには、その生物学的妥当性に挑戦する制限があり、グラフベースのタスクのためのトレーニングニューラルネットワークの効率、スケーラビリティ、並列性に影響を与える。
半教師付き学習のケーススタディを用いて,GNNに適した新しい前方学習フレームワークであるDFA-GNNを提案する。
論文 参考訳(メタデータ) (2024-06-04T07:24:51Z) - Enhancing Data-Assimilation in CFD using Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワーク(GNN)モデルによる随伴最適化に基づく,流体力学に応用されたデータ同化のための新しい機械学習手法を提案する。
我々は,有限要素法(FEM)の解法に基づく直接数値シミュレーションを用いて,GNNモデルと解法の間の2次元のインターフェースにより,GNNの予測をFEM解析の処理後ステップに組み込むことができることを示す。
論文 参考訳(メタデータ) (2023-11-29T19:11:40Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
流体の体積(VoF)法は多相流シミュレーションにおいて2つの不混和性流体間の界面を追跡・見つけるために広く用いられている。
VoF法の主なボトルネックは、計算コストが高く、非構造化グリッド上での精度が低いため、インタフェース再構成のステップである。
一般的な非構造化メッシュ上でのインタフェース再構築を高速化するために,グラフニューラルネットワーク(GNN)に基づく機械学習拡張VoF手法を提案する。
論文 参考訳(メタデータ) (2022-07-12T17:07:46Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。