DAMS:Dual-Branch Adaptive Multiscale Spatiotemporal Framework for Video Anomaly Detection
- URL: http://arxiv.org/abs/2507.20629v1
- Date: Mon, 28 Jul 2025 08:42:00 GMT
- Title: DAMS:Dual-Branch Adaptive Multiscale Spatiotemporal Framework for Video Anomaly Detection
- Authors: Dezhi An, Wenqiang Liu, Kefan Wang, Zening chen, Jun Lu, Shengcai Zhang,
- Abstract summary: This study offers a dual-path architecture called the Dual-Branch Adaptive Multiscale Stemporal Framework (DAMS), which is based on multilevel feature and decoupling fusion.<n>The main processing path integrates the Adaptive Multiscale Time Pyramid Network (AMTPN) with the Convolutional Block Attention Mechanism (CBAM)
- Score: 7.117824587276951
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of video anomaly detection is tantamount to performing spatio-temporal localization of abnormal events in the video. The multiscale temporal dependencies, visual-semantic heterogeneity, and the scarcity of labeled data exhibited by video anomalies collectively present a challenging research problem in computer vision. This study offers a dual-path architecture called the Dual-Branch Adaptive Multiscale Spatiotemporal Framework (DAMS), which is based on multilevel feature decoupling and fusion, enabling efficient anomaly detection modeling by integrating hierarchical feature learning and complementary information. The main processing path of this framework integrates the Adaptive Multiscale Time Pyramid Network (AMTPN) with the Convolutional Block Attention Mechanism (CBAM). AMTPN enables multigrained representation and dynamically weighted reconstruction of temporal features through a three-level cascade structure (time pyramid pooling, adaptive feature fusion, and temporal context enhancement). CBAM maximizes the entropy distribution of feature channels and spatial dimensions through dual attention mapping. Simultaneously, the parallel path driven by CLIP introduces a contrastive language-visual pre-training paradigm. Cross-modal semantic alignment and a multiscale instance selection mechanism provide high-order semantic guidance for spatio-temporal features. This creates a complete inference chain from the underlying spatio-temporal features to high-level semantic concepts. The orthogonal complementarity of the two paths and the information fusion mechanism jointly construct a comprehensive representation and identification capability for anomalous events. Extensive experimental results on the UCF-Crime and XD-Violence benchmarks establish the effectiveness of the DAMS framework.
Related papers
- Structural-Temporal Coupling Anomaly Detection with Dynamic Graph Transformer [41.16574023720132]
We propose a structural-temporal coupling anomaly detection architecture with a dynamic graph transformer model.<n>Specifically, we introduce structural and temporal features from two integration levels to provide anomaly-aware graph evolutionary patterns.
arXiv Detail & Related papers (2025-05-13T08:10:41Z) - Electromyography-Based Gesture Recognition: Hierarchical Feature Extraction for Enhanced Spatial-Temporal Dynamics [0.7083699704958353]
We propose a lightweight squeeze-excitation deep learning-based multi stream spatial temporal dynamics time-varying feature extraction approach.<n>The proposed model was tested on the Ninapro DB2, DB4, and DB5 datasets, achieving accuracy rates of 96.41%, 92.40%, and 93.34%, respectively.
arXiv Detail & Related papers (2025-04-04T07:11:12Z) - GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
We propose a Generalized Structural Sparse to capture powerful relationships across modalities for pair-wise similarity learning.
The distance metric delicately encapsulates two formats of diagonal and block-diagonal terms.
Experiments on cross-modal and two extra uni-modal retrieval tasks have validated its superiority and flexibility.
arXiv Detail & Related papers (2024-10-20T03:45:50Z) - Multimodal Attention-Enhanced Feature Fusion-based Weekly Supervised Anomaly Violence Detection [1.9223495770071632]
This system uses three feature streams: RGB video, optical flow, and audio signals, where each stream extracts complementary spatial and temporal features.
The system significantly improves anomaly detection accuracy and robustness across three datasets.
arXiv Detail & Related papers (2024-09-17T14:17:52Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Patch Spatio-Temporal Relation Prediction for Video Anomaly Detection [19.643936110623653]
Video Anomaly Detection (VAD) aims to identify abnormalities within a specific context and timeframe.
Recent deep learning-based VAD models have shown promising results by generating high-resolution frames.
We propose a self-supervised learning approach for VAD through an inter-patch relationship prediction task.
arXiv Detail & Related papers (2024-03-28T03:07:16Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
We propose a pretraining framework that enhances multiscale consistency in EM volumes.
Our approach leverages a Siamese network architecture, integrating strong and weak data augmentations.
It effectively captures voxel and feature consistency, showing promise for learning transferable representations for EM analysis.
arXiv Detail & Related papers (2023-08-19T05:49:13Z) - Deeply-Coupled Convolution-Transformer with Spatial-temporal
Complementary Learning for Video-based Person Re-identification [91.56939957189505]
We propose a novel spatial-temporal complementary learning framework named Deeply-Coupled Convolution-Transformer (DCCT) for high-performance video-based person Re-ID.
Our framework could attain better performances than most state-of-the-art methods.
arXiv Detail & Related papers (2023-04-27T12:16:44Z) - Spatiotemporal Multi-scale Bilateral Motion Network for Gait Recognition [3.1240043488226967]
In this paper, motivated by optical flow, the bilateral motion-oriented features are proposed.
We develop a set of multi-scale temporal representations that force the motion context to be richly described at various levels of temporal resolution.
arXiv Detail & Related papers (2022-09-26T01:36:22Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.