Ontology-Enhanced Knowledge Graph Completion using Large Language Models
- URL: http://arxiv.org/abs/2507.20643v1
- Date: Mon, 28 Jul 2025 09:00:48 GMT
- Title: Ontology-Enhanced Knowledge Graph Completion using Large Language Models
- Authors: Wenbin Guo, Xin Wang, Jiaoyan Chen, Zhao Li, Zirui Chen,
- Abstract summary: Large Language Models (LLMs) have been extensively adopted in Knowledge Graph Completion (KGC)<n>We propose an enhanced KGC method using LLMs -- OL-KGC.<n>It first leverages neural perceptual mechanisms to effectively embed structural information into the textual space, and then uses an automated extraction algorithm to retrieve ontological knowledge.
- Score: 20.080012331845065
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have been extensively adopted in Knowledge Graph Completion (KGC), showcasing significant research advancements. However, as black-box models driven by deep neural architectures, current LLM-based KGC methods rely on implicit knowledge representation with parallel propagation of erroneous knowledge, thereby hindering their ability to produce conclusive and decisive reasoning outcomes. We aim to integrate neural-perceptual structural information with ontological knowledge, leveraging the powerful capabilities of LLMs to achieve a deeper understanding of the intrinsic logic of the knowledge. We propose an ontology enhanced KGC method using LLMs -- OL-KGC. It first leverages neural perceptual mechanisms to effectively embed structural information into the textual space, and then uses an automated extraction algorithm to retrieve ontological knowledge from the knowledge graphs (KGs) that needs to be completed, which is further transformed into a textual format comprehensible to LLMs for providing logic guidance. We conducted extensive experiments on three widely-used benchmarks -- FB15K-237, UMLS and WN18RR. The experimental results demonstrate that OL-KGC significantly outperforms existing mainstream KGC methods across multiple evaluation metrics, achieving state-of-the-art performance.
Related papers
- Unveiling Knowledge Utilization Mechanisms in LLM-based Retrieval-Augmented Generation [77.10390725623125]
retrieval-augmented generation (RAG) is widely employed to expand their knowledge scope.<n>Since RAG has shown promise in knowledge-intensive tasks like open-domain question answering, its broader application to complex tasks and intelligent assistants has further advanced its utility.<n>We present a systematic investigation of the intrinsic mechanisms by which RAGs integrate internal (parametric) and external (retrieved) knowledge.
arXiv Detail & Related papers (2025-05-17T13:13:13Z) - Injecting Knowledge Graphs into Large Language Models [0.0]
We build on encoding techniques which integrate graph embeddings within the Large Language Models as tokens.<n>Our approach is model-agnostic, resource-efficient, and compatible with any LLMs.
arXiv Detail & Related papers (2025-05-12T13:31:26Z) - In-Context Learning with Topological Information for Knowledge Graph Completion [3.035601871864059]
We develop a novel method that incorporates topological information through in-context learning to enhance knowledge graph performance.<n>Our approach achieves strong performance in the transductive setting i.e., nodes in the test graph dataset are present in the training graph dataset.<n>Our method demonstrates superior performance compared to baselines on the ILPC-small and ILPC-large datasets.
arXiv Detail & Related papers (2024-12-11T19:29:36Z) - KaLM: Knowledge-aligned Autoregressive Language Modeling via Dual-view Knowledge Graph Contrastive Learning [74.21524111840652]
This paper proposes textbfKaLM, a textitKnowledge-aligned Language Modeling approach.<n>It fine-tunes autoregressive large language models to align with KG knowledge via the joint objective of explicit knowledge alignment and implicit knowledge alignment.<n> Notably, our method achieves a significant performance boost in evaluations of knowledge-driven tasks.
arXiv Detail & Related papers (2024-12-06T11:08:24Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning method that merges parametric and non-parametric memories to improve accurate reasoning with minimal external input.<n>GIVE guides the LLM agent to select the most pertinent expert data (observe), engage in query-specific divergent thinking (reflect), and then synthesize this information to produce the final output (speak)
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Bridging LLMs and KGs without Fine-Tuning: Intermediate Probing Meets Subgraph-Aware Entity Descriptions [49.36683223327633]
Large Language Models (LLMs) encapsulate extensive world knowledge and exhibit powerful context modeling capabilities.<n>We propose a novel framework that synergizes the strengths of LLMs with robust knowledge representation to enable effective and efficient KGC.<n>We achieve a 47% relative improvement over previous methods based on non-fine-tuned LLMs and, to our knowledge, are the first to achieve classification performance comparable to fine-tuned LLMs.
arXiv Detail & Related papers (2024-08-13T10:15:55Z) - Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK) is a comprehensive framework for knowledge reasoning.
CoK includes methodologies for both dataset construction and model learning.
We conduct extensive experiments with KnowReason.
arXiv Detail & Related papers (2024-06-30T10:49:32Z) - Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph [1.7418328181959968]
The proposed research aims to develop an innovative semantic query processing system.
It enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University.
arXiv Detail & Related papers (2024-05-24T09:19:45Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
Large Language Model Agents (LMAs) face issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts.
This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline to enhance the knowledge capabilities of LMAs.
Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content.
arXiv Detail & Related papers (2024-05-20T14:03:05Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
We propose a general Knowledge-Injected Curriculum Pretraining framework (KICP) to achieve comprehensive KG learning and exploitation for Knowledge-based question answering tasks.
The KI module first injects knowledge into the LM by generating KG-centered pretraining corpus, and generalizes the process into three key steps.
The KA module learns knowledge from the generated corpus with LM equipped with an adapter as well as keeps its original natural language understanding ability.
The CR module follows human reasoning patterns to construct three corpora with increasing difficulties of reasoning, and further trains the LM from easy to hard in a curriculum manner.
arXiv Detail & Related papers (2024-03-11T03:42:03Z) - Large Language Models Can Better Understand Knowledge Graphs Than We Thought [13.336418752729987]
We study how large language models (LLMs) process and interpret knowledge graphs (KGs)<n>At the literal level, we reveal LLMs' preferences for various input formats.<n>At the attention distribution level, we discuss the underlying mechanisms driving these preferences.
arXiv Detail & Related papers (2024-02-18T10:44:03Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.