A Multimodal Architecture for Endpoint Position Prediction in Team-based Multiplayer Games
- URL: http://arxiv.org/abs/2507.20670v1
- Date: Mon, 28 Jul 2025 09:51:49 GMT
- Title: A Multimodal Architecture for Endpoint Position Prediction in Team-based Multiplayer Games
- Authors: Jonas Peche, Aliaksei Tsishurou, Alexander Zap, Guenter Wallner,
- Abstract summary: This paper presents a multimodal architecture for predicting future player locations on a dynamic time horizon.<n>The architecture makes efficient use of the multimodal game state including image inputs, numerical and categorical features, as well as dynamic game data.
- Score: 42.059466998190224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and predicting player movement in multiplayer games is crucial for achieving use cases such as player-mimicking bot navigation, preemptive bot control, strategy recommendation, and real-time player behavior analytics. However, the complex environments allow for a high degree of navigational freedom, and the interactions and team-play between players require models that make effective use of the available heterogeneous input data. This paper presents a multimodal architecture for predicting future player locations on a dynamic time horizon, using a U-Net-based approach for calculating endpoint location probability heatmaps, conditioned using a multimodal feature encoder. The application of a multi-head attention mechanism for different groups of features allows for communication between agents. In doing so, the architecture makes efficient use of the multimodal game state including image inputs, numerical and categorical features, as well as dynamic game data. Consequently, the presented technique lays the foundation for various downstream tasks that rely on future player positions such as the creation of player-predictive bot behavior or player anomaly detection.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.<n>DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.<n>Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - Sports-Traj: A Unified Trajectory Generation Model for Multi-Agent Movement in Sports [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.<n>Specifically, we introduce a Ghost Spatial Masking (GSM) module, embedded within a Transformer encoder, for spatial feature extraction.<n>We benchmark three practical sports datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - Who You Play Affects How You Play: Predicting Sports Performance Using
Graph Attention Networks With Temporal Convolution [29.478765505215538]
This study presents a novel deep learning method, called GATv2-GCN, for predicting player performance in sports.
We use a graph attention network to capture the attention that each player pays to each other, allowing for more accurate modeling.
We evaluate the performance of our model using real-world sports data, demonstrating its effectiveness in predicting player performance.
arXiv Detail & Related papers (2023-03-29T14:48:51Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
We introduce a sport-agnostic graph-based representation of game states.
We then use our proposed graph representation as input to graph neural networks to predict sports outcomes.
arXiv Detail & Related papers (2022-07-28T14:45:02Z) - Collusion Detection in Team-Based Multiplayer Games [57.153233321515984]
We propose a system that detects colluding behaviors in team-based multiplayer games.
The proposed method analyzes the players' social relationships paired with their in-game behavioral patterns.
We then automate the detection using Isolation Forest, an unsupervised learning technique specialized in highlighting outliers.
arXiv Detail & Related papers (2022-03-10T02:37:39Z) - Predicting the outcome of team movements -- Player time series analysis
using fuzzy and deep methods for representation learning [0.0]
We provide a framework for the useful encoding of short tactics and space occupations in a more extended sequence of movements or tactical plans.
We discuss the effectiveness of the proposed approach for prediction and recognition tasks on the professional basketball SportVU dataset for the 2015-16 half-season.
arXiv Detail & Related papers (2021-09-13T18:42:37Z) - Time-series Imputation of Temporally-occluded Multiagent Trajectories [18.862173210927658]
We study the problem of multiagent time-series imputation, where available past and future observations of subsets of agents are used to estimate missing observations for other agents.
Our approach, called the Graph Imputer, uses forward- and backward-information in combination with graph networks and variational autoencoders.
We evaluate our approach on a dataset of football matches, using a projective camera module to train and evaluate our model for the off-screen player state estimation setting.
arXiv Detail & Related papers (2021-06-08T09:58:43Z) - Learning to Simulate Dynamic Environments with GameGAN [109.25308647431952]
In this paper, we aim to learn a simulator by simply watching an agent interact with an environment.
We introduce GameGAN, a generative model that learns to visually imitate a desired game by ingesting screenplay and keyboard actions during training.
arXiv Detail & Related papers (2020-05-25T14:10:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.