Uncertainty-driven Embedding Convolution
- URL: http://arxiv.org/abs/2507.20718v1
- Date: Mon, 28 Jul 2025 11:15:25 GMT
- Title: Uncertainty-driven Embedding Convolution
- Authors: Sungjun Lim, Kangjun Noh, Youngjun Choi, Heeyoung Lee, Kyungwoo Song,
- Abstract summary: We propose Uncertainty-driven Embedding Convolution (UEC)<n>UEC transforms deterministic embeddings into probabilistic ones in a post-hoc manner.<n>It then computes adaptive ensemble weights based on embedding uncertainty, grounded in a Bayes-optimal solution under a surrogate loss.
- Score: 12.284127272660982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text embeddings are essential components in modern NLP pipelines. While numerous embedding models have been proposed, their performance varies across domains, and no single model consistently excels across all tasks. This variability motivates the use of ensemble techniques to combine complementary strengths. However, most existing ensemble methods operate on deterministic embeddings and fail to account for model-specific uncertainty, limiting their robustness and reliability in downstream applications. To address these limitations, we propose Uncertainty-driven Embedding Convolution (UEC). UEC first transforms deterministic embeddings into probabilistic ones in a post-hoc manner. It then computes adaptive ensemble weights based on embedding uncertainty, grounded in a Bayes-optimal solution under a surrogate loss. Additionally, UEC introduces an uncertainty-aware similarity function that directly incorporates uncertainty into similarity scoring. Extensive experiments on retrieval, classification, and semantic similarity benchmarks demonstrate that UEC consistently improves both performance and robustness by leveraging principled uncertainty modeling.
Related papers
- Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models [5.6672926445919165]
Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ)<n>Existing UQ methods are often and lack a probabilistic foundation.<n>We propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations.
arXiv Detail & Related papers (2025-06-11T13:02:17Z) - Robust and Computation-Aware Gaussian Processes [18.264598332579748]
We introduce Robust Computation-aware Gaussian Process (RCaGP), a novel GP model that combines a principled treatment of approximation-induced uncertainty with robust generalized Bayesian updating.<n>Our model ensures more conservative and reliable uncertainty estimates, a property we rigorously demonstrate.<n> Empirical results confirm that solving these challenges jointly leads to superior performance across both clean and outlier-contaminated settings.
arXiv Detail & Related papers (2025-05-27T12:49:14Z) - Robust Confinement State Classification with Uncertainty Quantification through Ensembled Data-Driven Methods [39.27649013012046]
We develop methods for confinement state classification with uncertainty quantification and model robustness.<n>We focus on off-line analysis for TCV discharges, distinguishing L-mode, H-mode, and an in-between dithering phase (D)<n>A dataset of 302 TCV discharges is fully labeled, and will be publicly released.
arXiv Detail & Related papers (2025-02-24T18:25:22Z) - Distilling Calibration via Conformalized Credal Inference [36.01369881486141]
One way to enhance reliability is through uncertainty quantification via Bayesian inference.<n>This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model.<n> Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance.
arXiv Detail & Related papers (2025-01-10T15:57:23Z) - Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
We propose a method to inherently enhance the robustness and inference accuracy of BayNNs deployed in in-memory computing architectures.
Empirical results show a graceful degradation in inference accuracy, with an improvement of up to $58.11%$.
arXiv Detail & Related papers (2024-01-23T00:27:31Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
Conformal Prediction (CP) stands out as a robust framework for uncertainty quantification.
Existing approaches for tackling non-exchangeability lead to methods that are not computable beyond the simplest examples.
This work introduces a new efficient approach to CP that produces provably valid confidence sets for fairly general non-exchangeable data distributions.
arXiv Detail & Related papers (2023-12-25T20:02:51Z) - Diagnosing and Rectifying Fake OOD Invariance: A Restructured Causal
Approach [51.012396632595554]
Invariant representation learning (IRL) encourages the prediction from invariant causal features to labels de-confounded from the environments.
Recent theoretical results verified that some causal features recovered by IRLs merely pretend domain-invariantly in the training environments but fail in unseen domains.
We develop an approach based on conditional mutual information with respect to RS-SCM, then rigorously rectify the spurious and fake invariant effects.
arXiv Detail & Related papers (2023-12-15T12:58:05Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Flexible and Robust Counterfactual Explanations with Minimal Satisfiable
Perturbations [56.941276017696076]
We propose a conceptually simple yet effective solution named Counterfactual Explanations with Minimal Satisfiable Perturbations (CEMSP)
CEMSP constrains changing values of abnormal features with the help of their semantically meaningful normal ranges.
Compared to existing methods, we conduct comprehensive experiments on both synthetic and real-world datasets to demonstrate that our method provides more robust explanations while preserving flexibility.
arXiv Detail & Related papers (2023-09-09T04:05:56Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
Conformal prediction is emerging as a popular paradigm for providing rigorous uncertainty quantification in machine learning.
In this paper, we extend conformal prediction to the federated learning setting.
We propose a weaker notion of partial exchangeability, better suited to the FL setting, and use it to develop the Federated Conformal Prediction framework.
arXiv Detail & Related papers (2023-05-27T19:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.