Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models
- URL: http://arxiv.org/abs/2506.09684v1
- Date: Wed, 11 Jun 2025 13:02:17 GMT
- Title: Inv-Entropy: A Fully Probabilistic Framework for Uncertainty Quantification in Language Models
- Authors: Haoyi Song, Ruihan Ji, Naichen Shi, Fan Lai, Raed Al Kontar,
- Abstract summary: Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ)<n>Existing UQ methods are often and lack a probabilistic foundation.<n>We propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations.
- Score: 5.6672926445919165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have transformed natural language processing, but their reliable deployment requires effective uncertainty quantification (UQ). Existing UQ methods are often heuristic and lack a probabilistic foundation. This paper begins by providing a theoretical justification for the role of perturbations in UQ for LLMs. We then introduce a dual random walk perspective, modeling input-output pairs as two Markov chains with transition probabilities defined by semantic similarity. Building on this, we propose a fully probabilistic framework based on an inverse model, which quantifies uncertainty by evaluating the diversity of the input space conditioned on a given output through systematic perturbations. Within this framework, we define a new uncertainty measure, Inv-Entropy. A key strength of our framework is its flexibility: it supports various definitions of uncertainty measures, embeddings, perturbation strategies, and similarity metrics. We also propose GAAP, a perturbation algorithm based on genetic algorithms, which enhances the diversity of sampled inputs. In addition, we introduce a new evaluation metric, Temperature Sensitivity of Uncertainty (TSU), which directly assesses uncertainty without relying on correctness as a proxy. Extensive experiments demonstrate that Inv-Entropy outperforms existing semantic UQ methods. The code to reproduce the results can be found at https://github.com/UMDataScienceLab/Uncertainty-Quantification-for-LLMs.
Related papers
- Uncertainty-driven Embedding Convolution [12.284127272660982]
We propose Uncertainty-driven Embedding Convolution (UEC)<n>UEC transforms deterministic embeddings into probabilistic ones in a post-hoc manner.<n>It then computes adaptive ensemble weights based on embedding uncertainty, grounded in a Bayes-optimal solution under a surrogate loss.
arXiv Detail & Related papers (2025-07-28T11:15:25Z) - Assessing Correctness in LLM-Based Code Generation via Uncertainty Estimation [0.0]
We explore uncertainty estimation as a proxy for correctness in LLM-generated code.<n>We adapt two state-of-the-art techniques from natural language generation to the domain of code generation.<n>Our findings indicate a strong correlation between the uncertainty computed through these techniques and correctness.
arXiv Detail & Related papers (2025-02-17T10:03:01Z) - Uncertainty Quantification for LLMs through Minimum Bayes Risk: Bridging Confidence and Consistency [66.96286531087549]
Uncertainty quantification (UQ) methods for Large Language Models (LLMs) encompass a variety of approaches.<n>We propose a novel approach to integrating model confidence with output consistency, resulting in a family of efficient and robust UQ methods.<n>We evaluate our approach across various tasks such as question answering, abstractive summarization, and machine translation.
arXiv Detail & Related papers (2025-02-07T14:30:12Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
We introduce a deep learning framework that learns the one-to-many mappings between the inputs and outputs, together with faithful uncertainty measures.
Our framework demonstrates significantly more accurate uncertainty estimation than the current state-of-the-art methods.
arXiv Detail & Related papers (2020-07-25T05:29:34Z) - Scalable Uncertainty for Computer Vision with Functional Variational
Inference [18.492485304537134]
We leverage the formulation of variational inference in function space.
We obtain predictive uncertainty estimates at the cost of a single forward pass through any chosen CNN architecture.
We propose numerically efficient algorithms which enable fast training in the context of high-dimensional tasks.
arXiv Detail & Related papers (2020-03-06T19:09:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.